Lecture 16, Feb 18, 2022

The Dimension Formula

- Theorem II: The Dimension Formula: Let $A \in {}^m \mathbb{R}^n$, then dim null $A = n \operatorname{rank} A$ (or rank $A + \dim \operatorname{null} A = n$)
 - Proof:
 - * Let $\{s_1, \dots, s_k\}$ be a basis for null A; since null $A \sqsubseteq {}^n \mathbb{R}$, we can extend this to a basis for ${}^n \mathbb{R}$: $\{s_1, \dots, s_k, s_{k+1}, \dots, s_n\}$
 - * Claim: { As_{k+1}, \dots, As_n } is a basis for col A (if this is true, then dim col $A = n k = n \dim \operatorname{null} A$ and we're done)
 - Linear independence: $\sum_{i=k+1}^{n} \lambda_i \mathbf{A} \mathbf{s}_i = \mathbf{0}$ $\implies \mathbf{A} \left(\sum_{i=k+1}^{n} \lambda_i \mathbf{s}_i \right) = \mathbf{0}$ $\implies \sum_{i=k+1}^{n} \lambda_i \mathbf{s}_i \in \text{null } \mathbf{A}$ $\implies \sum_{i=k+1}^{n} \lambda_i \mathbf{s}_i = \sum_{i=1}^{k} \mu_i \mathbf{s}_i$ n

- Let $\mu_i = -\lambda_i \implies \sum_{i=1}^n \lambda_i s_i = \mathbf{0} \implies \lambda_i = 0$ since $\{s_i\}$ are a basis (note we can do this because *i* in the first summation and *i* in the second summation never have the

this because i in the first summation and i in the second summation never have the same values)

• Generation: span { As_{k+1}, \cdots, As_n } \subseteq col A by Prop. I because each $s_{k+1}, \cdots s_n \in$ col A- To go the other way: $y \in$ col A

$$\implies \exists \boldsymbol{x} \ni \boldsymbol{y} = \boldsymbol{A}\boldsymbol{x}, \boldsymbol{x} = \sum_{i=1}^{n} \beta_{i} \boldsymbol{s}_{i}$$
$$\implies \boldsymbol{y} = \sum_{i=1}^{n} \beta_{i} \boldsymbol{A} \boldsymbol{s}_{i}$$
$$\implies \sum_{i=k+1}^{n} \beta_{i} \boldsymbol{A} \boldsymbol{s}_{i}$$
$$\implies \boldsymbol{y} \in \operatorname{span} \{ \boldsymbol{A} \boldsymbol{s}_{k+1}, \cdots, \boldsymbol{A} \boldsymbol{s}_{n} \}$$

- Therefore $\operatorname{col} A = \operatorname{span} \{ A s_{k+1}, \cdots, A s_n \}$

- Consider Ax = b: there may exist no x, or one unique x, or infinitely many x
 - No solution: $b \notin \operatorname{col} A \implies \operatorname{col} A \subseteq \operatorname{col} [A|b]$ or $\operatorname{rank} A < \operatorname{rank} [A|b]$
 - Unique solution: $\mathbf{b} \in \operatorname{col} \mathbf{A}$ and $\operatorname{col} \mathbf{A} = \operatorname{col} [\mathbf{A} | \mathbf{b}]$ and $\operatorname{null} \mathbf{A} = \{\mathbf{0}\}$
 - Infinite solutions: $\mathbf{b} \in \operatorname{col} \mathbf{A}$ and $\operatorname{col} \mathbf{A} = \operatorname{col} [\mathbf{A} | \mathbf{b}]$ and dim null $\mathbf{A} > 0$
- Theorem III: The following statements are equivalent for $A \in {}^{n}\mathbb{R}^{n}$:
- 1. \boldsymbol{A} is invertible
 - 2. rank $\mathbf{A} = n$ (i.e. \mathbf{A} is full rank)
 - 3. A has linearly independent rows
 - 4. A has linearly independent columns
 - 5. $Ax = 0 \implies x = 0$
 - 6. $\boldsymbol{z}^T \boldsymbol{A} = \boldsymbol{0}^T \implies \boldsymbol{z} = \boldsymbol{0}$
- Fredholm Alternative: Either Ax = b has exactly one solution xor Ax = 0 has a nontrivial solution
- Proof of Theorem III: In the case where we have a set of equivalent statements it's often most convenient to show a circular chain of implication, e.g. 1 implies 2 implies 3 implies 1
 - $-1 \implies 2$: **A** is invertible means $\mathbf{A} = \mathbf{1} \implies \operatorname{rank} \mathbf{A} = \dim \operatorname{row} \mathbf{A} = \dim \operatorname{row} \mathbf{A} = n$

- $-2 \implies 3$: rank $\mathbf{A} = n \implies \dim \operatorname{row} \mathbf{A} = n$ but \mathbf{A} only has n rows, so they have to be linearly independent
- $-3 \implies 4$: Linearly independent rows $\implies \dim \operatorname{row} \mathbf{A} = n \implies \dim \operatorname{col} \mathbf{A} = n \implies$ the columns are linearly independent since there are n columns
- 4 \implies 5: Linearly independent columns $\implies \sum_{i=1}^{n} x_i c_i = \mathbf{0} \implies x_i = \mathbf{0} \implies \mathbf{x} = \mathbf{0}$ * Alternatively the independent columns implies rank $\mathbf{A} = n \implies \dim \operatorname{null} \mathbf{A} = \mathbf{0} \implies$
 - $\{ Ax = 0 \implies x = 0 \}$
- $-5 \implies 6: \{Ax = 0 \implies x = 0\} \implies \dim \operatorname{null} A = 0 \implies \operatorname{rank} A = n \implies \dim \operatorname{null} A^T = 0 \implies \{z^T A = 0 \implies z = 0\}$ $-6 \implies 1: \text{ By contraposition, assume } A \text{ is not invertible, which means there are zero rows in the }$
- rref, so rank A < n so the rows are linearly dependent, which means $z^T A = 0$ has a nontrivial solution