Lecture 15, Feb 15, 2022

Rank

- Definition: The *rank* of A, denoted rank A, is the common dimension of its row and column space: rank $A \equiv \dim \operatorname{row} A = \dim \operatorname{col} A$
 - Can also be expressed in different ways, e.g. number of nonzero rows in the RREF, the number of leading ones in the RREF, etc
- Properties of rank:
 - Property I: rank $\boldsymbol{A} = \operatorname{rank} \tilde{\boldsymbol{A}}$
 - Property II: rank $\boldsymbol{A} = \operatorname{rank} \boldsymbol{A}^T$
 - Property III: rank $UA \leq \operatorname{rank} A$
 - * row $UA \subseteq row A$ by Prop. I
 - * rank UA = rank A when U is invertible since row UA = row A by Prop. I
 - * Similarly rank $AV \leq \operatorname{rank} A$ and rank $AV = \operatorname{rank} A$ if (but not only if) V is invertible