Lecture 12, Feb 8, 2022

Existence of Bases

- Theorem V: Let \mathcal{V} be spanned by a finite set of vectors; then every linearly independent set in \mathcal{V} can be extended to a basis for \mathcal{V} (note we assume the set is not the zero set)
 - Proof by construction:

 - 1. Start with a linearly independent set $S_k = \{ v_1, \dots v_k \} \subset \mathcal{V}$ 2. span $S_k = \mathcal{V}$ or span $S_k \neq \mathcal{V}$; if span $S_k = \mathcal{V}$ then we have a linearly independent spanning set, which is a basis, so we're done
 - 3. Otherwise, $\exists (v_{k+1} \in \mathcal{V}) \notin \operatorname{span} S_k$; by Theorem IV, $S_{k+1} = \{v_1, \cdots, v_k, v_{k+1}\}$ is linearly independent
 - 4. If span $S_k = \mathcal{V}$ then we have a basis; otherwise, repeat the previous step until we eventually get a basis
 - * Because \mathcal{V} is spanned by a finite set of vectors, this will always result in a basis
 - * If it doesn't result in a basis then we'll end up with a set of linearly independent vectors that don't span \mathcal{V} but has more vectors than the finite set that spans \mathcal{V} , which violates the fundamental theorem
- Theorem V gives a maximally linearly independent set
- Theorem VII: Let \mathcal{V} be spanned by a finite set of vectors; then any spanning set for \mathcal{V} can be reduced to a basis (i.e. it contains a basis)
 - Proof by construction:
 - 1. Start with a spanning set span $S_p = \mathcal{V}$ where $S_p = \{ v_1, \cdots, v_p \} \subset \mathcal{V}$
 - 2. S_p is either linearly independent or not; if it is then S_p is a basis and we're done
 - 3. Otherwise, by Theorem I Corollary, $\exists v_p \in S_p$ such that span $S_{p-1} = \mathcal{V}$ where $S_{p-1} =$ $\{v_1, \cdots, v_{p-1}\}$ (renumber the vectors such that v_p is that vector)
 - 4. If S_{p-1} is linearly independent then we have a basis; otherwise repeat the previous step until we eventually get a basis
 - * This process must stop because eventually we get a set with just 1 vector which will be linearly independent
- Theorem VII gives a *minimally spanning set*
- Bases can be thought as minimally spanning sets or maximally independent sets
- Theorem VIII: Let \mathcal{V} be such that dim $\mathcal{V} = n$; then:
 - 1. Any linearly independent set of n vectors is a basis
 - 2. Any spanning set of n vectors is a basis
- Theorem VI: Let $\mathcal{U}, \mathcal{W} \sqsubseteq \mathcal{V}$, then:
 - 1. \mathcal{U}, \mathcal{W} are finite dimensional with dimensions less than or equal to \mathcal{V}
 - 2. If $\mathcal{U} \subseteq \mathcal{W}$ then $\dim \mathcal{U} \leq \dim \mathcal{W}$
 - 3. $\mathcal{U} \subseteq \mathcal{W} \land \dim \mathcal{U} = \dim \mathcal{W} \implies \mathcal{U} = \mathcal{W}$