Lecture 11, Feb 7, 2022

Minimal Spanning Sets

- Theorem I: Let $\{ \boldsymbol{v}_1, \boldsymbol{v}_2, \cdots, \boldsymbol{v}_n \} \subset \mathcal{V}$. For every v_k (where $k = 1, 2, \cdots n$), span $\{ \boldsymbol{v}_1, \boldsymbol{v}_2, \cdots, \boldsymbol{v}_{k-1}, \boldsymbol{v}_{k+1}, \cdots \boldsymbol{v}_n \} \subsetneq$ span $\{v_1, v_2, \cdots, v_n\}$ iff $\{v_1, v_2, \cdots, v_n\}$ is linearly independent
 - i.e. if we have a set of linearly independent vectors and we take a vector out, the resulting span is always a strict subset (gets smaller)
 - Corollary (contrapositive): Let $\{v_1, v_2, \dots, v_n\} \subset \mathcal{V}$, then for at least one v_k , span $\{v_1, v_2, \dots, v_{k-1}, v_{k+1}, \dots v_n\}$ span $\{v_1, v_2, \dots, v_n\}$ if and only if $\{v_1, v_2, \dots, v_n\}$ is linearly dependent
 - * Note the original theorem is for every v_k but the contrapositive is for at least one v_k
 - Proof: At least one v_k implies linear dependence:
 - * Let there be one v_k such that span $\{v_1, v_2, \cdots, v_{k-1}, v_{k+1}, \cdots v_n\} = \text{span}\{v_1, v_2, \cdots, v_n\}$
 - * Then $v_k \in \text{span} \{ v_1, v_2, \cdots, v_{k-1}, v_{k+1}, \cdots v_n \}$
 - * $\mathbf{v}_k = \sum_{i=1}^n \lambda_i \mathbf{v}_i \implies \lambda_1 \mathbf{v}_1 + \dots + (-1)\mathbf{v}_k + \dots + \lambda_n \mathbf{v}_n = \mathbf{0}$
 - * Therefore the set $\{v_1, v_2, \cdots, v_n\}$ is not linearly independent because the coefficient on v_k can be nonzero
 - Proof: Linear dependence implies existence of v_k :
 - * $\sum_{i=1}^{n} \lambda_i v_i = \mathbf{0}$ has at least one $\lambda_k \neq 0$; take the vector associated with this λ to be v_k

 - $\begin{array}{l} \overline{i=1} \\ * \ \lambda_k v_k = -\lambda_1 v_1 \dots \lambda_{k-1} v_{k-1} \lambda_{k+1} v_{k+1} \dots \lambda_n v_n \\ * \ v_k = -\frac{\lambda_1}{\lambda_k} v_1 \dots \frac{\lambda_{k-1}}{\lambda_k} v_{k-1} \frac{\lambda_{k+1}}{\lambda_k} v_{k+1} \dots \frac{\lambda_n}{\lambda_k} v_n \\ * \ \text{Therefore} \ v_k \in \text{span} \left\{ \ v_1, v_2, \dots, v_{k-1}, v_{k+1}, \dots v_n \ \right\} \ \text{so the span with} \ v_k \ \text{is the same as the} \\ \end{array}$ span without v_k
- Any minimum spanning set of a vector space is also a maximum independent set of that vector space - Taking any vector out of a set of linearly independent vectors loses information
- Theorem IV: Let $\{v_1, \dots, v_n\} \subset \mathcal{V}$ be linearly independent; then for another $v \in \mathcal{V}, \{v, v_1, \dots, v_n\}$ is linearly independent if and only if $v \notin \text{span} \{v_1, \dots, v_n\}$; i.e. we can add a vector to a linearly independent set and keep it linearly independent if this vector is not already in the span
 - Contrapositive: If $v \in \text{span}\{v_1, \dots, v_n\}$ then $\{v, v_1, \dots, v_n\}$ is linearly dependent
 - - * $\mathbf{v} \in \operatorname{span} \{ \mathbf{v}_1, \cdots, \mathbf{v}_n \} \implies \mathbf{v} = \sum_{i=1}^n \lambda_i \mathbf{v}_i \implies (-1)\mathbf{v} + \lambda_1 \mathbf{v}_1 + \cdots + \lambda_n \mathbf{v}_n = \mathbf{0} \text{ therefore the}$
 - set is linearly dependent * $\{v, v_1, \dots, v_n\}$ linearly dependent means $\lambda v + \lambda_1 v_1 + \dots + \lambda_n v_n = \mathbf{0}$ and not all λ s equal
 - First we need to show $\lambda \neq 0$: If $\lambda = 0$, that means the rest of the λ_i have to be 0, which would mean $\{v, v_1, \dots, v_n\}$ is linearly independent, creating a contradiction
 - Since $\lambda \neq 0$, $\mathbf{v} = -\frac{\lambda_1}{\lambda} \mathbf{v}_1 \dots \frac{\lambda_n}{\lambda} \mathbf{v}_n$