
Lecture 1, Jan 11, 2022
Review: Matrices

• A = [aij ] ∈ mRn is a general m × n matrix in the reals
– mR is the set of all m × 1 real matrices (i.e. columns)
– Rn is the set of all 1 × n real matrices (i.e. rows)
– We can also have matrices of C,Z,Q, etc

• Matrix multiplication: A ∈ mRn, B ∈ nRp =⇒ C = AB = [cij ] ∈ mRp, cij =
n∑

k=1
aikbkj

• Transpose swaps rows and columns: A ∈ mRn =⇒ AT ∈ nRm

• Trace is the sum of the main diagonal A ∈ nRn =⇒ tr A =
n∑

i=1
aii (for square matrices only)

• Determinant det A for square matrices
• Inverse A−1 also for square matrices; exists only when det A ̸= 0 (i.e. matrix is full rank); AA−1 =

A−1A = I
– Pseudoinverses exist for nonsquare matrices
– For square matrices AB = I =⇒ BA = I

• (AT )−1 = (A−1)T so sometimes we denote (A−1)T = A−T

• Symmetric matrices AT = A, skew symmetric (or anti-symmetric) AT = −A
• Identity denoted as a boldface 1
• Matrix addition is associative and commutative; matrix multiplication is associative and not commutative
• We have closure under matrix addition and scalar multiplication; that is after adding two matrices and

multiplying by a scalar we still get a matrix in the same dimensions

Lecture 2, Jan 14, 2022
Vector Spaces

• A vector space is the generalized concept of a vector that satisfies the usual rules of vector arithmetic
• Fundamental abstract operations addition + and scalar multiplication · can be defined in any way, not

just the common component-wise way
– If it can be defined in any way, what makes a definition meaningful? When does it make sense?

• Definition: A vector space V over a field Γ of elements {α, β, γ, · · · } called scalars, is a set of elements
{u, v, w, · · · } such that the following axioms are satisfied:

1. Vector addition denoted u + v satisfies, for all u, v, w ∈ V (properties AI - AIV):
1. Closure: u + v ∈ V
2. Associativity: (u + v) + w = u + (v + w)
3. Existence of zero or null vector 0 ∈ V such that u + 0 = u
4. Existence of a negative or additive inverse −u ∈ V such that u + (−u) = 0

2. Scalar multiplication denoted αu, such that for all u, v ∈ V and α, β ∈ Γ (properties MI - MIV):
1. Closure: αu ∈ V
2. Associativity: α(βu) = (αβ)u
3. Distributivity: (α + β)u = αu + βu, and α(u + v) = αu + αv
4. Unitary: For the identity 1 ∈ Γ, 1u = u

• Note that these properties imply commutativity for vector addition (will prove in a following lecture)
• A field Γ is a commutative group that has two operations, addition and multiplication (between scalars),

and has a set of elements such that:
1. Γ is commutative under addition
2. Γ is commutative under multiplication excluding zero
3. Multiplication is distributive over addition

• For us the field is almost always going to be R; other examples of fields include the rationals, the
complex numbers, etc
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• A group is a set of elements {x, y, z, · · · } and a binary operation xy such that the operation is closed,
associative, and there exists an inverse and identity for this operation; commutative groups additionally
have xy = yx

• Matrices are an example of a vector space since they satisfy all of the requirements, so we can think of
matrices as vectors

• Formally we would say V is a vector space over the field Γ under vector addition + and scalar
multiplication ·; as a shorthand we just say V is a vector space

Lecture 3, Jan 17, 2022
Vector Spaces, Continued

• Consider: { (x, y) | x, yinR } with the operations defined as (x1, y1) + (x2, y2) ≡ (x1 + x2, y1 + y2 + 1)
and α(x, y) ≡ (αx, αy + α − 1)

– Zero is (0, −1)
– Inverse is (−x, −y − 2)
– Actually distributive
– Since all axioms hold this is actually a vector space

Lecture 4, Jan 18, 2022
Commutativity and Other Properties of Vector Spaces

• What about the associative property u + v = v + u?
– This can be proven from the other properties, but first we will start with some other axioms

• There are some axioms that are one sided such as AIII and AIV (additive identity and inverse); we
will prove that these are two sided under the other axioms

• Proposition I: For every u, −u ∈ V, −u + u = 0 (i.e. property AIV but commutative)
– Proof: −u + u = (−u + u) + 0 AIII

= (−u + u) + (−u + (−(−u))) AIV
= −u + (u + (−u)) + (−(−u)) AII
= −u + 0 + (−(−u)) AIV
= −u + (−(−u)) AIII
= 0 AIV

– Thus AIV is commutative, and we can say that the additive inverse of −u is just u
• Proposition II: For every u ∈ V, 0 + u = u (i.e. property AIII but commutative)

– Proof: 0 + u = (u + (−u)) + u AIV
= u + (−u + u) AII
= u + 0 Prop. I
= u AIII

• Theorem I: Cancellation theorem: If u + w = v + w then u + v for any u, v, w ∈ V (this also applies
for w + u = w + v)

– Proof: u = u + 0 AIII
= u + (w + −w) AIV
= (u + w) + (−w) AII
= (v + w) + (−w) given
= v + (w + (−w)) AII
= v + 0 AIV
= v AIII
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• Note: a theorem and proposition are basically the same thing here, but typically theorem is used for
bigger results

• Define subtraction: u − v = u + (−v)
• Proposition III:

1. The zero 0 ∈ V is unique
– Proof: Let 0′ be another zero, then u + 0′ = u = u + 0 so by the cancellation theorem, 0′ = 0

2. The inverse is unique
3. −(−u) = u

• Proposition IV: For u, v ∈ V, u + v = v + u
– Proof: u + v = 0 + (u + v) + 0 Prop. II and AIII

= (−v + v) + (u + v) + (u + (−u)) Prop. I and AIV
= −v + ((v + u) + (v + u)) + (−u) AII
= −v + (1(v + u) + 1(v + u)) + (−u) MIV
= −v + (1 + 1)(v + u) + (−u) MIII
= −v + ((1 + 1)v + (1 + 1)u) + (−u) MIII
= −v + (1v + 1v + 1u + 1u) + (−u) MIII
= −v + (v + v + u + u) + (−u) MIV
= (−v + v) + v + u + (u + (−u)) AII
= 0 + v + u + 0 Prop. I and AIV
= v + u Prop. II and AIII

Lecture 5, Jan 24, 2022
More Vector Space Properties

• Proposition V: Properties of zero: For all v ∈ V and all α ∈ Γ:
1. 0v = 0

– 0v = 0v + 0 by AIII
– 0v = (0 + 0)v = 0v + 0v by MIII(a) and scalar addition properties
– By the transitive property 0v + 0 = 0v + 0v, then by the cancellation theorem 0v = 0

2. α0 = 0
– α0 = α(0 + 0) = α0 + α0
– Rest of the proof follows like above

3. If αv = 0 then either α = 0 or v = 0
– Either α = 0 or α ̸= 0; if α = 0 then 0v = 0 follows by 1, so we only need to consider α ̸= 0
– v = 1v MIV

= (α−1α)v Properties of scalars
= α−1(αv) MII
= α−10 Given
= 0 Prop. V.2

– Therefore either α = 0, or if α ̸= 0, then v = 0
• Proposition VI: For all v ∈ V and α ∈ Γ, (−α)v = −(αv) = α(−v)

– αv + (−αv) = (α − α)v MIII(a)
= 0v Properties of scalars
= 0 Prop. V.1

– Since αv + (−(αv)) = 0 by AIII, by the transitive property and cancellation −(αv) = (−α)v
– αv + α(−v) = α(v − v) MIII(b)

= α0 AIV
= 0 Prop. V.2

3



– It follows then that α(−v) = −(αv) = (−αv)
– Consider α = 1, then −(1v) = −v = (−1)v, so the additive inverse is always −1 times the vector!

Lecture 6, Jan 25, 2022
Subspaces

• A subset U of V is a subspace of V iff U is itself a vector space over the same field Γ with the same
vector addition and scalar multiplication operations of V

– X ⊆ Y ⇐⇒ ∀x ∈ X =⇒ x ∈ Y
– In this case the subset is not strict, i.e. U = V is allowed
– Every V has two subspaces, the space itself, and the subspace of only zero: U = V and U = { 0 }
– Sometimes the notation U ⊑ V is used

• Theorem 1: Subspace test: U ⊑ V iff for all u, v ∈ U and all α ∈ Γ:
1. Zero: ∃0 ∈ U ∋ u + 0 = u
2. Closure under addition: u + v ∈ U
3. Closure under scalar multiplication: αu ∈ U

• Proof of the subspace test:
– U ⊑ V =⇒ (SI, SII, SIII): By definition U is a vector space, therefore it automatically satisfies

all 3 axioms
– (SI, SII, SIII) =⇒ U ⊑ V:

* AI: Implied by SII
* AII: Automatically true since u ∈ U =⇒ u ∈ V and the addition operator is associative in

V (i.e. inherited from V)
* AIII: Implied by SI
* AIV: We have proven previously that (−1)u is the additive inverse of u; we also know

(−1)u ∈ U by SIII, so an inverse exists
* MI: Implied by SIII
* MII – MIII: Inherited from V
* MIV: 1u ∈ U by SIII and u ∈ V so 1u = u ∈ U

• Example: im A = { y | y = Ax∀x ∈ nR } ⊆ mR for A ∈ mRn

– Since mR is a vector space over R we only need to do the subspace test
– SI: Satisfied since 0 = A0 =⇒ 0 ∈ im A
– SII: y1, y2 ∈ im A =⇒ y1 = Ax1, y2 = Ax2 =⇒ y1 + y2 = A(x1 + x2)
– SIII: y ∈ im A =⇒ y = Ax =⇒ αy = α(Ax) = A(αx) ∈ im A

• Example: ker A = { x | Ax = 0 } for A ∈ mRn (kernel or null space of A)
– x ∈ nR so we can apply the subspace test
– SI: 0 ∈ ker A because A0 = 0
– SI: A(x1 + x2) = Ax1 + Ax2 = 0 + 0 = 0 =⇒ x1 + x2 ∈ ker A
– SIII: A(αx) = α(Ax) = α0 = 0 =⇒ αx ∈ ker A

Lecture 7, Jan 28, 2022
Linear Combination and Span

• Definition: A vector v ∈ V is a linear combination of { v1, v2, · · · , vn } ⊂ V if and only if it can be

written as v =
n∑

j=1
λjvj for λj ∈ Γ

– Note the use of ⊂ instead of ⊆ because for now we want to keep the set finite

• Definition: The span of { v1, v2, · · · , vn } ⊂ V is denoted: span { v1, v2, · · · , vn } =

 v

∣∣∣∣∣∣ v =
n∑

j=1
λjvj , ∀λj ∈ Γ

,

i.e. all the vectors that can be written as a linear combination of this set of vectors
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– Example: 3R = span


1

0
0

 ,

0
1
0

 ,

0
0
1


– { v1, v2, · · · , vn } is the spanning set of vectors (for now, this set will be finite, but the span itself

is infinite)
• Proposition I: The span of { v1, v2, · · · , vn } ∈ V is a subspace of V

– Proof:

* SI: 0 =
n∑

j=1
0vj therefore 0 in this subset

* SII : Let u ∈ V =
n∑

j=1
αjvj and w ∈ V =

n∑
j=1

βjvj then u + w =
n∑

j=1
(αj + βj)vj

* SIII: u ∈ V =
n∑

j=1
αjvj , then λu = λ

n∑
j=1

αjvj =
n∑

j=1
(λαj)vj

Lecture 8, Jan 31, 2022
Equivalence of Spans

• We can show equivalence of sets U = V by showing U ⊆ V and V ⊆ U
• To show equivalence of spans, we do the same and show both spans are subsets of the other

– It is sufficient to show that each member of the spanning set is in the other span; if ui =
n∑

k=1
αikvk,

then u =
m∑

i=1
λiui =

m∑
i=1

λi

(
n∑

k=1
αikvk

)
=

n∑
k=1

(
m∑

i=1

)
vk =

n∑
k=1

µkvk =⇒ u ∈ span { vj }

• Example: span { u, v } = span { u + v, u − v }?
– { u + v, u − v } ⊆ span { u, v } since they’re both linear combinations of u and v

– { u, v } ⊆ span { u + v, u − v } since u = 1
2(u + v) + 1

2(u − v) and v = 1
2(u + v) − 1

2(u − v)
• Proposition II: Let U = span { v1, v2, · · · , vn } ⊑ V. If W is a subspace of V containing the vectors

span { v1, v2, · · · , vn } then U ⊑ W.
– Any vector in U is a linear combination of those vectors, and since those vectors are in W, W

contains all linear combinations of those vectors

Linear Independence
• Linear independence: A set of vectors span { v1, v2, · · · , vn } is linearly independent if and only if

n∑
j=1

λjvj = 0 =⇒ λj = 0

– Example:
{ [

1
0

]
,

[
0
1

] }
are independent: λ1

[
1
0

]
+ λ2

[
0
1

]
=
[
0
0

]
=⇒

[
λ1
λ2

]
=
[
0
0

]
=⇒ λ1 = λ2 =

0
– Example:

{ [
1
0

]
,

[
0
1

]
,

[
1
1

] }
are not independent: λ1

[
1
0

]
+ λ2

[
0
1

]
+ λ3

[
1
1

]
=
[
0
0

]
can be satisfied

with


λ1 = 1
λ2 = 1
λ3 = −1

• Proposition I: If { v1, v2, · · · , vn } ⊂ V is linearly independent and v =
n∑

j=1
λjvj for all v ∈ V then λj

are uniquely determined, i.e. there is only one way to construct any vector
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– Proof: Assume that λj are not uniquely determined. Let v =
n∑

j=1
λjvj =

n∑
j=1

µjvj then 0 =

v − v =
n∑

j=1
(λj − µj) = vj and because the set is linearly independent λj − µj = 0 =⇒ λj = µj ,

so λj are uniquely determined
• This generalizes to any kind of vector, e.g. functions

– e.g. to show { sin x, cos x } are linearly independent we show λ1f + λ2g = z =⇒ λ1 = λ2 = 0
where z : R 7→ { 0 }

* We want to show λ1 cos x + λ2 sin x = 0∀x ∈ R; we can consider x = 0 =⇒ λ1 = 0, and
x = π

2 =⇒ λ2 = 0

Lecture 9, Feb 1, 2022
Basis

• Fundamental Theorem of Linear Algebra: Let V be a vector space spanned by n vectors. If a set of m
vectors from V is linearly independent, then m ≤ n.

– This is equivalent to saying if m > n then any set of m vectors from V is linearly dependent (this
is the contrapositive statement: if A =⇒ B, then ¬B =⇒ ¬A)

– Proof by contraposition: Let m > n, we show that this implies a set of m vectors is dependent.
* Consider a set of m vectors { u1, · · · , um } and let span { v1, · · · , vn } = V

* Since uj ∈ V, uj =
n∑

i=1
aijvi and so

m∑
j=1

xjuj =
m∑

j=1
xj

(
n∑

i=1
aijvi

)

=
n∑

i=1

 m∑
j=1

aijxj

vi

* Set
n∑

i=1

 m∑
j=1

aijxj

vi = 0; this will be satisfied if each
m∑

j=1
aijxj = 0; this is a set of linear

equations Ax = 0 where A is n × m; since we have m > n there are infinite number of
solutions to this system, i.e. there exist a nontrivial solution, therefore not all xj have to be 0,
so the set { u1, · · · , um } is linearly dependent

• Define the basis for a vectors space V to be a set of vectors { e1, e2, · · · , en } that are linearly independent
and span { e1, e2, · · · , em } = V

– Every basis for a given vector space contains the same number of vectors:
* Let E = { e1, e2, · · · , en } and F = { f1, f2, · · · , fn } be bases
* Consider E to be linearly independent and F to span V, then by the fundamental theorem

n ≤ m; consider F to be linearly independent and E to span V, then by the fundamental
theorem m ≤ n, therefore m = n

– We say that a basis generates V
• Definition: The dimension of a vector space V, denoted dim V, is the number of vectors in any of its

bases
– Note: Define dim { 0 } = 0

Lecture 10, Feb 4, 2022
Basis Continued

• In general dim nR = dim Rn = n and dim mRn = mn
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• The standard basis is the set




1
0
0
...

 ,


0
1
0
...

 ,


0
0
1
...

 , · · ·


• Example: Consider the space of skew-symmetric matrices U =

{
S
∣∣ S = −ST , S ∈ 3R3 }

– S = ST means the diagonal is forced to be zero

– We can now write S =

 0 a b
−a 0 c
−b −c 0

 = a

 0 1 0
−1 0 0
0 0 0

+ b

 0 0 1
0 0 0

−1 0 0

+ c

0 0 0
0 0 1
0 −1 0


– Since those 3 matrices span U and are linearly independent they form a basis, therefore dim U = 3

• Let V be a finite-dimensional vector space with dim V = n, then
1. A linearly independent set of vectors in V can at most contain n vectors
2. A spanning set for V must contain at least n vectors

• We can add vectors to any linearly independent set until we have V = n vectors; we can take away
vectors from any spanning set until we have n vectors; at n vectors, we can have a spanning set that is
linearly independent

– Sometimes referred to as the rule of the extreme middle
• A basis characterizes a vector space

Lecture 11, Feb 7, 2022
Minimal Spanning Sets

• Theorem I: Let { v1, v2, · · · , vn } ⊂ V . For every vk (where k = 1, 2, · · · n), span { v1, v2, · · · , vk−1, vk+1, · · · vn } ⊊
span { v1, v2, · · · , vn } iff { v1, v2, · · · , vn } is linearly independent

– i.e. if we have a set of linearly independent vectors and we take a vector out, the resulting span is
always a strict subset (gets smaller)

– Corollary (contrapositive): Let { v1, v2, · · · , vn } ⊂ V , then for at least one vk, span { v1, v2, · · · , vk−1, vk+1, · · · vn } =
span { v1, v2, · · · , vn } if and only if { v1, v2, · · · , vn } is linearly dependent

* Note the original theorem is for every vk but the contrapositive is for at least one vk

– Proof: At least one vk implies linear dependence:
* Let there be one vk such that span { v1, v2, · · · , vk−1, vk+1, · · · vn } = span { v1, v2, · · · , vn }
* Then vk ∈ span { v1, v2, · · · , vk−1, vk+1, · · · vn }

* vk =
n∑

i=1
(i ̸=k)

λivi =⇒ λ1v1 + · · · + (−1)vk + · · · + λnvn = 0

* Therefore the set { v1, v2, · · · , vn } is not linearly independent because the coefficient on vk

can be nonzero
– Proof: Linear dependence implies existence of vk:

*
n∑

i=1
λivi = 0 has at least one λk ̸= 0; take the vector associated with this λ to be vk

* λkvk = −λ1v1 − · · · − λk−1vk−1 − λk+1vk+1 − · · · − λnvn

* vk = − λ1

λk 1
v1 − · · · − λk−1

λk
vk−1 − λk+1

λk
vk+1 − · · · − λn

λk
vn

* Therefore vk ∈ span { v1, v2, · · · , vk−1, vk+1, · · · vn } so the span with vk is the same as the
span without vk

• Any minimum spanning set of a vector space is also a maximum independent set of that vector space
– Taking any vector out of a set of linearly independent vectors loses information

• Theorem IV: Let { v1, · · · , vn } ⊂ V be linearly independent; then for another v ∈ V, { v, v1, · · · , vn }
is linearly independent if and only if v /∈ span { v1, · · · , vn }; i.e. we can add a vector to a linearly
independent set and keep it linearly independent if this vector is not already in the span

– Contrapositive: If v ∈ span { v1, · · · , vn } then { v, v1, · · · , vn } is linearly dependent
– Proof:
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* v ∈ span { v1, · · · , vn } =⇒ v =
n∑

i=1
λivi =⇒ (−1)v + λ1v1 + · · · + λnvn = 0 therefore the

set is linearly dependent
* { v, v1, · · · , vn } linearly dependent means λv + λ1v1 + · · · + λnvn = 0 and not all λs equal

zero
• First we need to show λ ̸= 0: If λ = 0, that means the rest of the λi have to be 0, which

would mean { v, v1, · · · , vn } is linearly independent, creating a contradiction
• Since λ ̸= 0, v = −λ1

λ
v1 − · · · − λn

λ
vn

Lecture 12, Feb 8, 2022
Existence of Bases

• Theorem V: Let V be spanned by a finite set of vectors; then every linearly independent set in V can be
extended to a basis for V (note we assume the set is not the zero set)

– Proof by construction:
1. Start with a linearly independent set Sk = { v1, · · · vk } ⊂ V
2. span Sk = V or span Sk ̸= V ; if span Sk = V then we have a linearly independent spanning set,

which is a basis, so we’re done
3. Otherwise, ∃(vk+1 ∈ V) /∈ span Sk; by Theorem IV, Sk+1 = { v1, · · · , vk, vk+1 } is linearly

independent
4. If span Sk = V then we have a basis; otherwise, repeat the previous step until we eventually

get a basis
* Because V is spanned by a finite set of vectors, this will always result in a basis
* If it doesn’t result in a basis then we’ll end up with a set of linearly independent vectors

that don’t span V but has more vectors than the finite set that spans V, which violates
the fundamental theorem

• Theorem V gives a maximally linearly independent set
• Theorem VII: Let V be spanned by a finite set of vectors; then any spanning set for V can be reduced

to a basis (i.e. it contains a basis)
– Proof by construction:

1. Start with a spanning set span Sp = V where Sp = { v1, · · · , vp } ⊂ V
2. Sp is either linearly independent or not; if it is then Sp is a basis and we’re done
3. Otherwise, by Theorem I Corollary, ∃vp ∈ Sp such that span Sp−1 = V where Sp−1 =

{ v1, · · · , vp−1 } (renumber the vectors such that vp is that vector)
4. If Sp−1 is linearly independent then we have a basis; otherwise repeat the previous step until

we eventually get a basis
* This process must stop because eventually we get a set with just 1 vector which will be

linearly independent
• Theorem VII gives a minimally spanning set
• Bases can be thought as minimally spanning sets or maximally independent sets
• Theorem VIII: Let V be such that dim V = n; then:

1. Any linearly independent set of n vectors is a basis
2. Any spanning set of n vectors is a basis

• Theorem VI: Let U , W ⊑ V, then:
1. U , W are finite dimensional with dimensions less than or equal to V
2. If U ⊆ W then dim U ≤ dim W
3. U ⊆ W ∧ dim U = dim W =⇒ U = W
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Lecture 13, Feb 11, 2022
Null, Column, and Row Space

• The null space is defined as null A = { x ∈ nR | Ax = 0 } ⊆ R

• Consider A =

a11 · · · a1n

...
. . .

...
am1 · · · amn

 ∈ mRn; A can be expressed as a set of rows A =

r1
...

rm

 , rk ∈ Rn or

a set of columns A =
[
c1 · · · cn

]
, cj ∈ mR

• Define the row space of A as row A = span { r1, · · · rm } ⊑ Rn, the column space of A as col A =
span { c1, · · · cn } ⊑ mR

– Both the row space and the column space have max dimension min { m, n } because they’re
restricted by the number of vectors in the spanning set and the space it’s a subspace of

• The column space of A is equal to its image: col A = { y ∈ mR | y = Ax, ∀x ∈ nR }
• Proposition I: Let A ∈ mRn and U ∈ mRm, V ∈ nRn, then:

1. row UA ⊑ row A
– All the rows of UA are linear combinations of the rows of A

2. col AV ⊑ col A
– Similarly the columns of AV are linear combinations of the columns of A

3. If U , V are invertible, then row UA = row A and col AV = col A
– If U is invertible, consider U → U−1 and A → UA, so row UA ⊑ row A ⇐⇒

row U−1(UA) ⊑ row UA =⇒ row A ⊑ row UA
– Since the two subspaces are within each other they must be equal

• Proposition II: Let { x1, · · · , xr } ⊂ mR, U ∈ mRm invertible, then { x1, · · · , xr } is linearly independent
iff { Ux1, · · · , Uxr } is linearly independent

– Proof:
n∑

i=1
λi(Uxi) = 0 ⇐⇒ U

(
n∑

i=1
λixi

)
= 0 ⇐⇒

n∑
i=1

λixi = 0 so linearly independence of

one set implies all λi = 0 which means the other set is linearly independent
– We don’t lose any information by multiplying a set of vectors by an invertible matrix

Lecture 14, Feb 14, 2022
Row Dimension Equals Column Dimension

• Lemma I: Let A ∈ mRn, then row Ã = row A (where Ã is the row-reduced echelon form of A), so
dim row Ã = dim row A, and the nonzero rows of Ã form a basis for row Ã = row A

– Proof:
* Ã = En · · · E1A = EA; since Ei are elementary matrices they are invertible, therefore E is

invertible, so by Prop. I, row Ã = row A
* To show the rows of Ã form a basis, we show linear independence and span

• The nonzero rows span row Ã = row A because the zero rows add nothing to the span
• The rows are linearly independent because there is only one nonzero entry in each column

with a leading 1
• Lemma II: Let A ∈ mRn, then (1) the columns with leading ones in Ã is a basis for col Ã, and (2) the

columns in A corresponding to the columns with leading ones in Ã is a basis for col A
– In other words, col Ã ̸= col A, but we can get a basis for col A by taking the columns in A that

correspond to columns with leading ones in Ã
– As a result dim col Ã = dim col A
– Proof (1):

* Independence: The columns with leading ones in Ã are independent because they are a subset
of the standard basis for mR

* Generation: They also span Ã because the columns without leading ones can be expressed as
a linear combination of the columns with leading ones

9



– Proof (2): (ci denotes columns in A, c′
i denotes columns in Ã, c′

ji denotes column i with leading
one in Ã, cji denotes the column in A corresponding to column i with leading one in Ã)

* Independence: Ã = EA =⇒
[
c′

1 · · · c′
n

]
=
[
Ec1 · · · Ecn

]
=⇒ c′

i = Eci =⇒ ci =
E−1c′

i so the set of columns in A corresponding to the leading ones columns in Ã are linearly
independent as they are related by an invertible matrix by Prop. II

* Generation: Let y =
n∑

i=1
µici ∈ col A; y =

n∑
i=1

µj(E−1c′
j) = E−1

(
n∑

i=1
µjc′

j

)
∈ col Ã;

but we’ve previously shown that the columns with leading ones form a basis for col Ã, so

E−1

(
n∑

i=1
µjc′

j

)
= E−1

(
n∑

i=1
ηicji

)
=

n∑
i=1

E−1ηic
′
ji =

n∑
i=1

ηicji

• Lemma II gives us two methods of making a basis from a spanning set: making the vectors the rows of
a matrix, reducing the matrix and then taking the nonzero rows as the basis, or making the vectors the
columns, reducing the matrix and then taking the columns corresponding to columns with leading ones

• Theorem I: Let A ∈ mRn, then dim row A = dim col A
– Proof: dim row A = dim row Ã = r = dim col Ã = dim col A

Lecture 15, Feb 15, 2022
Rank

• Definition: The rank of A, denoted rank A, is the common dimension of its row and column space:
rank A ≡ dim row A = dim col A

– Can also be expressed in different ways, e.g. number of nonzero rows in the RREF, the number of
leading ones in the RREF, etc

• Properties of rank:
– Property I: rank A = rank Ã
– Property II: rank A = rank AT

– Property III: rank UA ≤ rank A
* row UA ⊆ row A by Prop. I
* rank UA = rank A when U is invertible since row UA = row A by Prop. I
* Similarly rank AV ≤ rank A and rank AV = rank A if (but not only if) V is invertible

Lecture 16, Feb 18, 2022
The Dimension Formula

• Theorem II: The Dimension Formula: Let A ∈ mRn, then dim null A = n − rank A (or rank A +
dim null A = n)

– Proof:
* Let { s1, · · · , sk } be a basis for null A; since null A ⊑ nR, we can extend this to a basis for

nR: { s1, · · · , sk, sk+1, · · · , sn }
* Claim: { Ask+1, · · · , Asn } is a basis for col A (if this is true, then dim col A = n − k =

n − dim null A and we’re done)
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• Linear independence:
n∑

i=k+1
λiAsi = 0

=⇒ A

(
n∑

i=k+1
λisi

)
= 0

=⇒
n∑

i=k+1
λisi ∈ null A

=⇒
n∑

i=k+1
λisi =

k∑
i=1

µisi

– Let µi = −λi =⇒
n∑

i=1
λisi = 0 =⇒ λi = 0 since { si } are a basis (note we can do

this because i in the first summation and i in the second summation never have the
same values)

• Generation: span { Ask+1, · · · , Asn } ⊆ col A by Prop. I because each sk+1, · · · sn ∈ col A
– To go the other way: y ∈ col A

=⇒ ∃x ∋ y = Ax, x =
n∑

i=1
βisi

=⇒ y =
n∑

i=1
βiAsi

=⇒
n∑

i=k+1
βiAsi

=⇒ y ∈ span { Ask+1, · · · , Asn }
– Therefore col A = span { Ask+1, · · · , Asn }

• Consider Ax = b: there may exist no x, or one unique x, or infinitely many x
– No solution: b /∈ col A =⇒ col A ⊊ col[A|b] or rank A < rank[A|b]
– Unique solution: b ∈ col A and col A = col[A|b] and null A = { 0 }
– Infinite solutions: b ∈ col A and col A = col[A|b] and dim null A > 0

• Theorem III: The following statements are equivalent for A ∈ nRn:
1. A is invertible
2. rank A = n (i.e. A is full rank)
3. A has linearly independent rows
4. A has linearly independent columns
5. Ax = 0 =⇒ x = 0
6. zT A = 0T =⇒ z = 0

• Fredholm Alternative: Either Ax = b has exactly one solution xor Ax = 0 has a nontrivial solution
• Proof of Theorem III: In the case where we have a set of equivalent statements it’s often most convenient

to show a circular chain of implication, e.g. 1 implies 2 implies 3 implies 1
– 1 =⇒ 2: A is invertible means Ã = 1 =⇒ rank A = dim row A = dim row Ã = n
– 2 =⇒ 3: rank A = n =⇒ dim row A = n but A only has n rows, so they have to be linearly

independent
– 3 =⇒ 4: Linearly independent rows =⇒ dim row A = n =⇒ dim col A = n =⇒ the columns

are linearly independent since there are n columns

– 4 =⇒ 5: Linearly independent columns =⇒
n∑

i=1
xici = 0 =⇒ xi = 0 =⇒ x = 0

* Alternatively the independent columns implies rank A = n =⇒ dim null A = 0 =⇒
{ Ax = 0 =⇒ x = 0 }

– 5 =⇒ 6: { Ax = 0 =⇒ x = 0 } =⇒ dim null A = 0 =⇒ rank A = n =⇒ dim null AT =
0 =⇒

{
zT A = 0 =⇒ z = 0

}
11



– 6 =⇒ 1: By contraposition, assume A is not invertible, which means there are zero rows in the
rref, so rank A < n so the rows are linearly dependent, which means zT A = 0 has a nontrivial
solution

Lecture 17, Feb 28, 2022
Non-Square Matrices

• Theorem IV: Let A ∈ mRn; then the following are equivalent:
1. rank A = n
2. The columns of A are linearly independent
3. Ax = 0 =⇒ x = 0
4. AT A is invertible
5. A has a left inverse (∃B ∋ BA = 1 ∈ nRn), where B = (AT A)−1AT is the left inverse, known

as the Moore-Penrose pseudoinverse
• This necessitates m ≥ n, i.e. A is a “tall” matrix, because if n > m then the columns cannot be

independent
• Proof:

– 1 =⇒ 2: rank A = n =⇒ dim col A = n so the columns are linearly independent as there are n
columns

– 2 =⇒ 3: The columns are independent, so the only linear combination of the columns that add
to 0 is all 0s, which is the zero vector

– 3 =⇒ 4: AT A is square, so it is invertible if and only if AT Ax = 0 =⇒ x = 0
* Lemma III: Let s ∈ nR and sT s = 0 then s = 0

• Proof: sT s =
n∑

i=1
s2

i = 0 but each s2
i ≥ 0, which means all s2

i = 0 =⇒ si = 0 =⇒ s = 0

* AT Ax = 0
=⇒ xT AT Ax = 0
=⇒ (Ax)T (Ax) = 0
=⇒ Ax = 0
=⇒ x = 0

– 4 =⇒ 5: AT A is invertible implies ∃C ∋ CAT A = 1; let B = CAT , then B is the one-sided
inverse

– 5 =⇒ 1: Show the columns are linearly independent:
n∑

i=1
xici = 0

=⇒ Ac = 0
=⇒ BAc = 0
=⇒ 1c = 0
=⇒ c = 0

• Theorem IV: Let A ∈ mRn (this time n ≥ m, i.e. A is short and wide); then the following are equivalent:
1. rank A = m
2. The rows of A are linearly independent
3. xT A = 0T =⇒ x = 0
4. AAT is invertible
5. A has a right inverse (∃B ∋ AB = 1 ∈ mRm), where B = AT (AAT )−1 (also the Moore-Penrose

pseudoinverse)

12



Lecture 18, Mar 1, 2022
Linear Transformations/Operators

• Definition: A linear transformation is a transformation between two vector spaces V and W , L : V 7→ W
(where V is the domain and W is the codomain) that has the following properties:

1. (L1) Distribution: L (u + v) = L (u) + L (v), ∀u, v ∈ V
2. (L2) Homogeneity: L (λv) = λL (v), ∀v ∈ V, λ ∈ Γ

• These properties can be combined into one as L (λu + µv) = λL (u) + µL (v)
• A matrix A ∈ mRn can be thought of as a linear transformation of A : mR 7→ nR

• The trace tr A =
n∑

i=1
aii is a linear transformation tr : nRn 7→ R

– L1: tr(A + B) =
n∑

i=1
(aii + bii) =

n∑
i=1

aii +
n∑

i=1
bii = tr A + tr B

– L2: tr(λA) =
n∑

i=1
λaii = λ

n∑
i=1

aii = λ tr A

• Properties of linear transformations L : V 7→ W:
1. L (0) = 0

– L (0) = L (0v) = 0L (v) = 0
2. L (−v) = −L (v)

– L (−v) = L ((−1)v) = −1L (v) = −L (v)

3. L

(
n∑

i=1
λivi

)
=

n∑
i=1

λL (vi)

– Proven by induction
• Definition: The image of a linear transformation L : V 7→ W is im L = { w ∈ W | w = L (v), ∀v ∈ V }

(column space for a matrix)
– The image is a subspace of W

• L maps V into W if L : V 7→ W but im L ̸= W
• L maps V onto W if im L = W (surjective), i.e. ∀w ∈ W, ∃v ∋ L (v) = w
• L is injective if it is one-to-one, i.e. no two vectors in V maps onto the same vector in W : ∄v1 = v2 ∈

V ∋ L (v1) = L (v2)
• If L is surjective and injective then it is bijective

– Bijective transformations have inverses
• Definition: The kernel of a linear transformation L : V 7→ W is ker L = { v ∈ V | L (v) = 0 } (null

space for a matrix)
– The kernel is a subspace of V
– The kernel is everything in V that maps to 0 in W

• The dimension formula for linear transformations: dim ker L + dim im L = dim V
– Analogous to the dimension formula for matrices; for matrices ker A = null A, im A = col A and

dim V = n

Lecture 19, Mar 4, 2022
Linear Transformations and Matrices

• Not only do all matrices represent linear transformations, all linear transformations can be represented
as a matrix; there exists a one-to-one relationship between matrices and linear transformations

• Consider L : V 7→ W and w ∈ W = L (v ∈ V)

– v =
n∑

j=1
vjej given E = { e1, · · · , en } is a basis for V
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– w = L

 n∑
j=1

vjej

 =
n∑

j=1
vjL (ej)

– w =
m∑

i=1
wihi where H = { h1, · · · , hm } is a basis for W

– L (ej) =
m∑

i=1
lijhi =⇒ w =

n∑
j=1

vjL (ej) =
n∑

j=1
vj

(
m∑

i=1
lijhi

)
=

n∑
i=1

 n∑
j=1

lijvj

hi

– Compare the 2 lines above, we get wi =
n∑

j=1
lijvj which is a matrix multiplication: w = Lv

* w =

w1
...

wm

 , v =

v1
...

vn

 , L =
[
lij
]

– The vj are coordinates of v with respect to the basis E; wi are coordinates of w with respect to
the basis H

• There is a one-to-one relationship between w = L (v) and w = Lv

Lecture 20, Mar 7, 2022
Change of Basis

• Say we have a vector expressed in a vector space as coordinates with respect to one set of basis vectors;
how do we express them in terms of another basis?

• The new coordinates in terms of the new basis is related to the old coordinates by a matrix
• v = P v′ where P is the transition matrix or transformation matrix or change-of-basis matrix
• Let V where dim V = n have 2 bases: E = { e1, · · · , en } and F = { f1, · · · , fn }

– v =
n∑

i=1
v

(e)
i ei =

n∑
i=1

v
(f)
i fi

– Let ve =

v
(e)
1
...

v(e)
n

 , vf =

v
(f)
1
...

v(f)
n


* ve are the coordinates in terms of E, vf are the coordinates in terms of F

– What is the relationship between ve and vf ?

• Since the bases live in V, in general ej =
n∑

i=1
pijfi

– v =
n∑

i=1
v

(f)
i fi

=
n∑

j=1
v

(e)
j ej

=
n∑

j=1
v

(e)
j

(
n∑

i=1
pijfi

)

=
n∑

i=1

 n∑
j=1

pijv
(e)
j

fi

– v
(f)
i =

n∑
j=1

pijv
(e)
j or vf = P ve

– The columns of P are the basis en expressed in terms of fn

14



• Proposition III: Let Be = { e1, · · · , en } be the standard basis for nR and Bf = { f1, · · · fn } be another
basis; then the transition matrix from Bf to Be is Q =

[
f1 · · · fn

]
• There is an isomorphism between V ↔ nR; instead of thinking of members of V directly, we can think

about their coordinates, which are vectors in nR
• Theorem II: Let Be = { e1, · · · , en } ⊂ V be a basis for V and the coordinates v′ ∈ nR for v ∈ V; then

{ v1, · · · , vm } is linearly independent iff the coordinates { v′
1, · · · , v′

m } are linearly independent

– Note notation v = v1e1 + · · · + vnen =
[
e1 · · · en

] v1
...

vn

 = EEE v where EEE ∈ Vn, formalized as

Vn × nR 7→ V
– Proposition IV:

* If EEE v = 0 then v = 0 because { e1, · · · , em } are linearly independent
* If EEE v = EEE u then v = u since there is only one way to express a given vector as a linear

combination of a set of independent vectors

– Proof:
n∑

j=1
λjvj = 0 ⇐⇒

n∑
j=1

λj(EEE v′
j) = 0 ⇐⇒ EEE

 n∑
j=1

= λjv′
j

 = 0 ⇐⇒
n∑

j=1
= λjv′

j = 0

Lecture 21, Mar 8, 2022
The Determinant Function

• Every matrix has a determinant denoted det(A); for 2 × 2 matrix this is ad − bc

• Let A =

r1
...

rn

 ∈ nRn; then the determinant function ∆n : nRn 7→ R is any function that satisfies the

following:
1. Adding one row to another row leaves the result unchanged: ∆n

[
E(1; i, j)A

]
= ∆n(A)

– E(λ; i, j) is an elementary matrix of type III that multiplies row j by λ and adds it to row i
2. ∆n

[
E(λ, i)A

]
= λ∆n(A)

– E(λ, i) is an elementary matrix of type II that multiplies row i by λ
• The determinant function is homogeneous in each row (i.e. scaling a row scales the entire determinant)
• Theorem I: ∆n : nRn 7→ R has the properties:

1. If A has a zero row, then ∆n(A) = 0
– Proof: If row i of A is zero, then E(0, i)A = A, therefore ∆n

[
E(0, i)A

]
= ∆n(A) =

0∆n(A) = 0
2. ∆n

[
E(λ; i, j)A

]
= ∆n(A) (property 1, but with any scalar multiple)

– Proof: Trivially true for λ = 0; for nonzero λ, scale row j by λ (scales the determinant by
j), then add row j to row i (determinant unchanged), then divide the result by λ (determent
scaled by 1

λ
), which gives the same determinant

3. Interchanging rows negates the determinant: ∆n

[
E(i, j)A

]
= −∆n(A)

– Proof: ∆n



...
rj

...
ri

...


= −∆n



...
−rj

...
ri

...


= −∆n



...
−rj

...
ri − rj

...


= ∆n



...
−rj

...
rj − ri

...


= ∆n



...
−ri

...
rj − ri

...


=
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−∆n



...
ri

...
rj − ri

...


= −∆n



...
ri

...
rj

...


4. If the rows of A are linearly dependent then ∆n(A) = 0

– Proof: If the rows are dependent, then at least one row can be written as a linear combination
of the others; therefore by adding multiples of other rows to this row (does not change
the determinant by property 2), it is possible to make this row all zero, which means the
determinant is 0 (by property 1)

5. The determinant function is linear in every row (n-linear): ∆n


...

λp + µq
...

 = λ∆n


...
p
...

+ µ∆n


...
q
...


– Proof: Without loss of generality, show ∆n

[
p + q

...

]
= ∆n

[
p
...

]
+ ∆n

[
q
...

]
* If the rest of the rows are dependent, then by property 4 each determinant is 0 so 0 = 0 + 0
* If the rest of the rows are independent, extend the rest of the rows to a basis for Rn

by adding an independent vector; then p =
n∑

i=1
λiri and q =

n∑
i=1

µkrk so ∆n

[
p + q

...

]
=

∆n

(λ1 + µ1)r1 +
n∑

k=2
(λk + µk)rk

...

 = ∆n

[
(λ1 + µ1)r1

...

]
= (λ1 + µ1)∆n

[
r1
...

]
; also by

the same process ∆n

[
p
...

]
= λ1∆n

[
r1
...

]
and ∆n

[
q
...

]
= µ1∆n

[
r1
...

]

Lecture 22, Mar 11, 2022
More Determinant Properties

• Proposition I: Let D ∈ nRn be a diagonal matrix with entries d1, · · · , dn on the diagonal, then

∆n(D) = ∆n(1)
n∏

i=1
dn

• Proposition II: Let U ∈ nRn be an upper triangular matrix, then ∆n(U) = ∆n(1)
n∏

i=1
uii

– Start at the bottom row, make it a 1, cancel the column, etc

Lecture 23, Mar 14, 2022
The Determinant

• Lemma I: If ∆n : nRn 7→ R is a determinant function, then ∆n(A) = κ(A)∆n(1) where κ(A) is a scalar
function of A

– Proof: Gaussian eliminate on A until it is upper triangular, i.e. E1 · · · EnU ; ∆n(U) = ∆n(1)
n∏

i=1
uii

which is a scalar times ∆n(1); since elementary matrices either scale, negate, or leave the
determinant unchanged, the final result is going to be a scalar times ∆n(1)
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• Theorem II: Let ∆n : nRn 7→ R and ∆̂n : nRn 7→ R; ∆̂n satisfies an additional property DIII ∆̂n(1) = 1;
then ∆n(A) = ∆̂n(A)∆n(1)

– Proof: Consider ∆n(A) − ∆̂n(A)∆n(1) = κ(A)∆n(1) − κ(A)∆̂n(1)∆n(1)
= κ(A)∆n(1) − κ(A)∆n(1)
= 0

– Corollary: If ∆n(1) = 1 as well, then ∆n(A) = ∆̂n(A)
* If DIII also holds, then the determinant function is unique

• Definition: The determinant of A ∈ nRn is the unique determinant function ∆n : nRn 7→ R that
satisfies:

1. DI: Adding one row to another row leaves the result unchanged: ∆n

[
E(1; i, j)A

]
= ∆n(A)

– E(λ; i, j) is an elementary matrix of type III that multiplies row j by λ and adds it to row i
2. DII: ∆n

[
E(λ, i)A

]
= λ∆n(A)

– E(λ, i) is an elementary matrix of type II that multiplies row i by λ
3. DIII: ∆n(1) = 1

• Definition: The (i, j) minor of a square matrix A ∈ nRn, denoted Mij(A) ∈ n−1Rn−1, is the matrix
obtained by eliminating the i-th row and j-th column

• Definition: The function detn : nRn 7→ R is detnA =
n∑

k=1
(−1)k+jakjdetn−1Mkj(A) for any 1 ≤ j ≤ n

and det1
[
a
]

= a
– We can use any column and the definition still works
– This is known as the Laplace expansion

• Theorem III: detn
nRn 7→ R is the determinant

– This shows the existence and uniqueness of the determinant
• The determinant can also be denoted |A|

Lecture 24, Mar 15, 2022
Additional Properties of the Determinant

• Determinant of elementary matrices: det E(i, j) = −1, det E(λ; i) = λ, det E(λ; i, j) = 1
• Theorem IV: Cauchy-Binet Product Rule: Let A, B ∈ nRn, then det(AB) = det(A) det(B)

– Proof: Define ∆B(A) = det(AB)
* Claim: ∆B is a proper determinant function:

1. ∆B

[
E(1; i, j)A

]
= det

[
E(1; i, j)AB

]
= det(AB) = ∆B(A)

2. ∆B

[
E(λ; i)A

]
= det

[
E(λ; i)AB

]
= λ det(AB) = λ∆B(A)

* From ∆n(A) = det(A)∆n(1) we know ∆B(A) = det(A)∆B(1) = det(A) det(B)
* Therefore det(A) det(B) = ∆B(A) = det(AB)

• Theorem V: Transpose Rule: Let A ∈ nRn, then det A = det AT

– This means we can also compute the determinant along rows instead of columns, since the matrix
can be transposed and the determinant is unchanged

– Proof: Define ∆T (A) = det AT

* Claim: ∆T is a proper determinant function:
1. ∆T

[
E(1; i, j)A

]
= det(EA)T = det(AT ET ) = det(AT ) det(ET ) = det(AT ) det(E(λ; j, i)) =

det(AT ) = ∆T (A)
2. ∆T

[
E(λ; i)A

]
= det(AT ) det(ET ) = det(AT ) det(E(λ; i)) = λ det(AT ) = λ∆T (A)

3. ∆T (1) = det(1T ) = det 1 = 1
* Therefore ∆T is the determinant, and since the determinant is unique, det AT = ∆T (A) =

det A
• Theorem VI: Invertibility theorem: A ∈ nRn is invertible iff det A ̸= 0

– Proof:
* If A invertible, then AA−1 = 1 =⇒ det(AA−1) = det 1 = 1 =⇒ det(A) det(A−1) = 1 so

det(A) ̸= 0
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• Corollary: det A−1 = 1
det A

if A is invertible
* By contraposition, if A is not invertible, then its rows are dependent, then det A = 0; therefore

det A ̸= 0 =⇒ A is invertible

Lecture 25, Mar 18, 2022
Cramer’s Rule

• Cramer’s Rule (Maclaurin-Cramer Rule): The solution to Ax = b where A ∈ nRn is given by
xi = det Ai

det A
where xi are the components of x and Ai is A with column i replaced by b, if det A ̸= 0

– Ai =
[
c1 · · · b · · · cn

]
– b = Ax =

[
c1 · · · cn

]
x =

n∑
j=1

xjcj

– det Ai = det
[

c1 · · ·
n∑

j=1
xjcj · · · cn

]

= det

c1 · · · xici +
n∑

j=1
j ̸=i

xjcj · · · cn


= det

[
c1 · · · xici · · · cn

]
= xi det

[
c1 · · · ci · · · cn

]
= xi det A

– Provided that det A ̸= 0, we have det Ai = xi det A =⇒ xi = det Ai

det A
– Note the sum is just adding multiples of other columns, which does not change the determinant as

per determinant properties
• Cramer’s rule is computationally inefficient for larger matrices (O((n + 1)!) operations if taking

determinants recursively); Gaussian elimination is much better for larger matrices (O(n3) operations)
– For smaller matrices it might be faster; in general this depends on the matrix itself (e.g. number

of zeros)

Cofactors and Adjoints
• Definition: The (i, j) cofactor of A ∈ nRn is cij(A) = (−1)i+j det Mij(A)

– Using the cofactor, the determinant can be written as
n∑

j=1
akjckj , true for any k

•
n∑

j=1
aijckj =

{
det A k = i

0 k ̸= i

– Proof: Consider A′ ∈ nRn which is A with row k replaced with row i
* det A′ = 0 because rows are not independent

* Using the Laplace expansion about row k: det A′ = 0 =
n∑

j=1
a′

kjckj(A′) =
n∑

j=1
aijckj(A)

• a′
kj = aij because we replaced row k by row i

• ckj(A′) = ckj(A) because row k was eliminated in the calculation of the cofactor so the
minors are the same

•
n∑

j=1
aijckj is like taking ACT where C =

[
ckj

]
is the cofactor matrix
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•
{

det A k = i

0 k ̸= i
is just (det A)1

• ACT = (det A)1
• Definition: The adjoint of A is adj A = CT

– Also known as the adjugate
• Theorem VIII: A(adj A) = (det A)1 = (adj A)A

– If A is invertible then A−1 = 1
det A

adj A

• det(adj A) = (det A)n−1

• If A is non-invertible, then (adj A)A = 0 =⇒ col A ⊆ null adj A; if A ̸= 0, dim col A ≥ 1 =⇒
dim null adj A ≥ 1

– n − rank adj A = dim null adj A =⇒ rank adj A < n =⇒ adj A is not invertible
– det(adj A) = 0 so the previous equation still holds

Lecture 27, Mar 22, 2022
Eigenvalues and Eigenvectors: Definition and Motivation

• Motivation: Finding solutions to a system of differential equations ẋ = Ax, x = x(t) ∈ nR, where the
dot indicates time derivative

– Assume that A ∈ nRn is constant
– Each equation is first order, but higher order equations can also be expressed in this form by

making derivatives also variables
• As in the case for scalars, try x(t) = peλt where p ∈ nR

– ẋ = Ax =⇒ λpeλt = Apeλt =⇒ λp = Ap =⇒ (λ1 − A)p = 0
* This is similar to the characteristic equation in the scalar case
* We can say that p ̸= 0 since that would give the trivial solution
* This means that (λ1 − A) must have a null space, which means λ1 − A cannot have full rank,

so we must choose λ such that (λ1 − A) is singular, i.e. det(λ1 − λA) = 0
* The “eigenproblem”

– The λ that make det(λ1 − λA) = 0 are the eigenvalues of A
– The nontrivial p are the eigenvectors (for a particular λ)

* Note these can be scaled arbitrarily
• For A ∈ nRn, there are n such λ, because det(λ1 − λA) is an n-th degree polynomial of λ

– Expanding out the determinant, we obtain the characteristic polynomial (eigenpolynomial?) of
this system of differential equations; when we set it to zero, we obtain the characteristic equation
(eigenequation?)

– Notation: CA(λ) for the eigenpolynomial
• Since p ∈ null(λ1 − A), the eigenspace for an eigenvalue λ is { p ∈ nR | Ap = λp } = null(λ1 − λA)

(sometimes denoted Eλ)
– The bases for the eigenspaces are the eigenvectors
– All the eigenvectors are linearly independent
– Note that since 0 is the trivial eigenvector, normally we use “eigenvector” to refer to only nonzero

eigenvectors
• If A is viewed as a linear transformation, eigenvectors are the vectors that are scaled by the transfor-

mation by an eigenvalue (i.e. direction remains unchanged)
• This allows us to solve the general n-th order differential equation

– Let x1 = x, x2 = ẋ, then ẋ1 = x2, ẋ2 = ẍ = −a1ẋ − a0x = −a1x2 − a0x1

– We can put this in a matrix as
[
ẋ1
ẋ2

]
=
[

0 1
−a0 −a1

] [
x1
x2

]
– By extension this can be used to solve a linear system of any order

• The eigenvalues of an upper triangular matrix are the values on the diagonal of the matrix (since the
determinant of such a matrix is the product of the diagonal)

• “Eigen” is a German word meaning “characteristic, proper”
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Lecture 28, Mar 25, 2022
Properties of Eigenvalues and Eigenvectors

• If A =
[
a11 a12
a21 a22

]
, the eigenvalues satisfy λ2−(a11+a22)λ+(a11a22−a12a21) = λ2−(tr A)λ+det A = 0

• In general, for A ∈ nRn, λn − (tr A)λn−1 + · · · + (−1)n det A = 0
• Proposition I: Let λ, µ be two distinct eigenvalues for A ∈ nRn, then Eλ ∩ Eµ = { 0 }

– Proof: Let x ∈ Eλ ∩ Eµ, then Ax = λx and Ax = µx =⇒ λx = µx =⇒ (λ − µ)x = 0, but
λ ̸= µ so x = 0

• Note eigenvalues may be complex

Diagonalizability

• We have


Ap1 = λ1p1
...
Apn = λnpn

=⇒ A
[
p1 · · · pn

]
=
[
p1 · · · pn

] λ1
. . .

λn


– This can be written as AP = P Λ
– Suppose p1, · · · , pn are linearly independent, then P is invertible, then P −1AP = Λ

* This is called diagonalization since Λ is a diagonal matrix
• If we had η̇ = Λη =⇒ { η̇i = λiηi }, which is a system of decoupled differential equations
• Definition: P ∈ nRn diagonalizes A ∈ nRn if P is invertible and P −1AP = Λ

– However, it’s not always possible to find a set of pn such that P is invertible, i.e. not all matrices
are diagonalizable

• Theorem I: Diagonalization Theorem: The matrix P ∈ nRn diagonalizes A ∈ nRn (i.e. P −1AP = Λ)
iff P the columns of P are eigenvectors of A that form a basis for nR

• Note that P −1AP = Λ =⇒ A = P ΛP −1

Lecture 29, Mar 28, 2022
Diagonalization Properties

• Proposition II: Let A, T ∈ nRn and T be invertible, then A and T −1AT have the same characteristic
polynomial and therefore same eigenvalues

– T −1AT is known as a similarity transformation of A
– Proof: det(λ1 − T −1AT )

= det(λT −1T − T −1AT )
= det(T −1(λ1 − A)T )
= det(T −1) det(λ1 − A) det(T )
= det(λ1 − A)

• Theorem II: Let A ∈ nRn be diagonalizable; then:

1. The characteristic equation for A can be written as cA(λ) = det(λ1 − A) =
n∏

α=1
(λ − λα)

– If A is diagonalized by P then cA(λ) = cP −1AP (λ) = cΛ(λ)

2. det(A) =
n∏

α=1
λα
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– Proof: A = P ΛP −1 =⇒ det(A) = det(P ΛP −1)
= det(P ) det(Λ) det(P −1)
= det(Λ)

=
n∏

α=1
(λ − λα)

3. tr A =
n∑

α=1
λα

– Proof: tr A = tr(P ΛP −1) = tr(P P −1Λ) = tr(Λ) =
n∑

α=1
λα

– Note tr(ST ) = tr(T S)
• Theorem II holds for all matrices, even ones that are not diagonalizable, we just currently cannot prove

it
• It’s important to note that repeated eigenvalues are counted multiple times

Lecture 30, Mar 29, 2022
Independence of Eigenspaces

• Theorem III: Let A ∈ nRn have r distinct eigenvalues (r ≤ n) denoted λ1, · · · , λr, and let xα ∈ Eλα

but xα ̸= 0; then { x1, · · · , xr } is linearly independent
– i.e. eigenvectors corresponding to different eigenvalues are always linearly independent
– Proof by induction:

* For k = 1, the set { x1 } is linearly independent
* Assume { x1, · · · , xk } is linearly independent

* Consider
k+1∑
i=1

µixi = 0

=⇒
k+1∑
i=1

µiAxi = 0

=⇒
k+1∑
i=1

µiλixi = 0

=⇒
k+1∑
i=1

µiλixi − λk+1

k+1∑
i=1

µixi = 0

=⇒
k+1∑
i=1

µi(λi − λk+1)xi = 0

=⇒
k∑

i=1
µi(λi − λk+1)xi = 0

=⇒ µ1, · · · , µk = 0
=⇒ µk+1xk+1 = 0
=⇒ µk+1 = 0
=⇒ { x1, · · · , xk+1 } is linearly independent

– Corollary: If all the eigenvalues of A are distinct, then A is diagonalizable (since if r = n, we can
pick a set of n independent eigenvectors, which must be a basis for nR)

* However, if the eigenvalues are not distinct, that doesn’t mean the matrix is not diagonalizable
• Lemma I: Let A ∈ nRn have r distinct eigenvalues and xα ∈ Eλα

, if x1 + · · · + xn = 0 then xα = 0
– Proof:
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* Consider µ1x1 + · · · + µrxr = 0
* If xα ̸= 0 for some α then µα = 0 since x1, · · · , xr are independent
* This contradicts x1 + · · · + xr = 0

• Theorem IV: Let A ∈ nRn have r distinct eigenvalues and Hλα
be a linearly independent set of

eigenvectors from Eλα
, then Hλ1 ∪ Hλ2 ∪ · · · ∪ Hλr

is linearly independent
– Proof:

* Let Hλα = { pα,1, · · · , pα,mα }

*
m1∑
j=1

µ1,jp1,j +
m2∑
j=2

µ2,jp2,j + · · · +
mr∑
j=1

µr,jpr,j = 0

* x1 + · · · + xr = 0 =⇒ xα = 0 by Lemma I
* Since each sum adds up to zero, all µ are zero since each H is linearly independent
* Therefore the union of all the sets is linearly independent

Lecture 31, Apr 1, 2022
Criteria for Diagonalizability

• m1 + m2 + · · · + mr ≤ n where mα = dim Eλα
for A ∈ nRn

– Proof: Let { pα,j } be a set of eigenvectors in Hλα
; m1 + · · · + mr is the total number of vectors

in Hλ1 ∪ · · · ∪ Hλα
; this cannot exceed n as that would violate the fundamental theorem

– Corollary: If m1 + · · · + mr = n, then A is diagonalizable
• Definition: Let A ∈ nRn have eigenvalues λα; then the algebraic multiplicity of λα is nα, the highest

power of (λ − λα) that divides the characteristic equation for A
– i.e. the algebraic multiplicity of λα is the number of times λα appears as a root of the characteristic

polynomial
• Definition: The geometric multiplicity of λα is mα = dim Eλα

, i.e. the dimension of its eigenspace
– Theorem VI: Diagonalization Test: mα = nα for all α if and only if the matrix is diagonalizable

(proven next lecture)

• Proposition III: Let A =
[
1 B
0 C

]
∈ nRn and 1 ∈ rRr (and C ∈ n−rRn−r), then det A = det C

– Take A and reduce it into A′ =
[
1 B′

0 C ′

]
where C is upper triangular

* We can do this by some E without having to multiply any row by a scalar since we don’t need
the leading entries to be 1

– det(A′) = det(C ′) = (−1)p det(C)
– det(A′) = (−1)p det(A) since the same operations were performed on A
– The minus signs cancel so det(A) = det(C)

• Theorem V: Multiplicity Theorem: 1 ≤ mα ≤ nα

– Proof: Consider λα; Let F = { f1, · · · , fmα
} be a basis for Eλα

where mα = dim Eλα

* We can extend this basis for a basis for nR
* Let Q be the transition matrix from F to E0 = { e1, · · · , emα , · · · , en }, the standard basis

for nR, then Q =
[
f1 · · · fn

]
and Qeα = fα, i.e. Q−1fα = eα

* Consider Q−1AQejα = Q−1Afjα = λαQ−1fjα = λαejα where jα = 1, · · · , mα

* So Q−1AQ =
[
λα1 B

0 C

]
where 1 ∈ mαRmα since using the standard basis vectors we can

pick out the λα for the first mα columns
* Consider cA(λ) = cQ−1AQ(λ)

= det
[
(λ − λα)1 −B

0 λ1 − C

]
= (λ − λα)mα det

[
1 −B
0 λ1 − C

]
= (λ − λα)mα det(λ1 − C)
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• Note the first line relies on the similarity transformation preserving the characteristic
equation

• The last line relies on Prop. III
* This shows us that we have to have at least mα repeated roots of λα, so mα ≤ nα

* Since every eigenspace must have at least one nontrivial eigenvector mα ≥ 1

Lecture 32, Apr 4, 2022
The Diagonalization Test

• Theorem VI: Diagonalization Test: Let A ∈ nRn with distinct eigenvalues λ1, · · · , λr, then A is
diagonalizable if and only if ∀α, mα = nα, where mα is the geometric multiplicity and nα is the
algebraic multiplicity

– Proof: [ =⇒ ] Let A be diagonalizable, then:
* If A is diagonalizable then there are n linearly independent eigenvectors; let E = Eλ1 ∪· · ·∪Eλr

be a linearly independent set of eigenvectors where Eλα
is a basis for each eigenspace

* Since E is a basis for nR, we have n = |E| where E is the cardinality of E (i.e. number of
elements)

* Since Eλi
∩ Eλj

= ∅, so then n = |E| =
r∑

α=1
|Eλα

| =
r∑

α=1
mα ≤

r∑
α=1

nα = n

• Note n1 + n2 + · · · + nr = n

* Therefore
r∑

α=1
mα =

r∑
α=1

nα, and since mα ≤ nα we must have mα = nα for all α

– Proof: [ ⇐= ] For mα = nα, ∀α:

* |E| =
r∑

α=1
|Eλα

| =
r∑

α=1
mα =

r∑
α=1

nα = n

* Since |E| = n there are n linearly independent eigenvectors, which span and form a basis for
nR, so A is diagonalizable

Lecture 33, Apr 5, 2022
Solving Differential Equations with Diagonalization

• Given ẋ = Ax, x(0) = x0, how do we get x(t)?
• Assume A is diagonalizable, then ẋ = P ΛP −1x
• We can use P as a transition matrix; set x = P η, then ẋ = Ax

=⇒ P η̇ = (P ΛP −1)(P η)
=⇒ P η̇ = P Λη

=⇒ η̇ = Λη
– Since Λ is diagonal, we have now decoupled the system!
– Each equation becomes η̇α = λαηα, so each solution is ηα(t) = cαeλαt

• The full solution becomes x(t) = P η(t) =
[
p1 · · · pn

] c1eλ1t

...
cneλnt

 = c1p1eλ1t + · · · + cnpneλnt

• Plugging the initial conditions t = 0 gives c1p1 + · · · + cnpn = x0 = P c; solving the system gives the
coefficients

• The eigenvalues λ are in the exponents, which dictate the speed at which the solution decays, or the
frequency of oscillations

• The eigenvectors dictate the shape of the solution
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Lecture 34, Apr 8, 2022
The Matrix Exponential

• Consider the scalar case where exp x =
∞∑

k=0

xk

k!

• Let X ∈ nRn, then define eX = exp X =
∞∑

k=0

Xk

k!
– Note we have to define X0 = 1

• We know that in the scalar case ẋ = ax has solution x(t) = x0eat; can we do the same for the matrix
exponential?

• eAt =
∞∑

k=0

Ak

k! tk =⇒ d
dt

eAt =
∞∑

k=1

Ak

(k − 1)! t
k−1 =

∞∑
k=0

Ak+1

k! tk = A

∞∑
k=0

Ak

k! tk = AeAt

• Therefore in the general case of ẋ = Ax, x(0) = x0 the solution is eAtx0
• How do we actually compute eAt?

– If A is diagonalizable, then A = P ΛP −1, so An = (P ΛP −1)(P ΛP −1) · · · (P ΛP −1) = P ΛnP −1

– Λn is easy to compute, since Λ is diagonal, we simply take the diaongal entries to the nth power

• Using this result, eAt =
∞∑

k=0
P

Λn

k! P −1tk

= P

( ∞∑
k=0

Λk

k! tk

)
P −1

= P eΛtP −1

= P



∞∑
k=0

λk
2

k! tk 0 · · ·

0
∞∑

k=0

λk
2

k! tk · · ·

...
...

. . .


P −1

= P

eλ1t 0 · · ·
0 eλ2t · · ·
...

...
. . .

P −1

Lecture 35, Apr 11, 2022
Example Problems

• Consider the sequence: xk+1 = Axk, xk ∈ nR, and let A ∈ nRn be diagonalizable with real eigenvalues;
show that if all |λα| < 1, then xk → 0 as k → ∞

– Note xk = Akx0
– lim

k→∞
xk = lim

k→∞
Akx0 = lim

k→∞
P ΛkP −1x0

– lim
k→∞

Λk = lim
k→∞

λk
1

λk
2

. . .

 = 0

– Therefore lim
k→∞

P ΛkP −1x0 = 0
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