Lecture 6, Jan 24, 2022

Improper Integrals

e Remember: Infinity is NaN, so we must define any expression that contains it
o0

o Definition: If hm = / f(x)dx = L, define / f(x)dx = L; these are called improper integrals

— We can also have the lower limit %o to infinity in the same way, or both bounds be infinite
— Also define [f(x)]:" as hm [f(x)], if the limit exists/converges

— If the limit doesn’t ex1st then we say that the integral diverges
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o Not all improper integrals converge! Example: / —dz = lim [In m]g
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Integrals can diverge for other reasons: / sinxdxr = lim sin x dx
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— Since cos a does not approach any value for a — oo this integral is undefined
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e General example: / - dr forp>0,p#1anda >0
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— If p <1 then thls will diverge
o Technique to demonstrate convergence: given f, g continuous and 0 < f(z) < g(z) for = € [a, 0], then
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if / gdx converges so does / f dx; similarly if / f dx diverges then so does / gdzx
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* We note < — = 3
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* Since — > 1, —5 da converges
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* Since this is larger than our integrand, our integral will also converge
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* Note (7+ %)% < 7+ for z > 3



* Therefore

* Since
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\ﬁ n dz diverges and our integrand is always greater than this integrand, our
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integral also diverges

e When we have both bounds infinite we can break it up: / flx)da = / flx)dx + / f(z

— a can be anything here but we can usually choose it to be something convenient

— Note /_w#blirglo/_bf(x)dx

* This works if the integral converges because in that case it doesn’t matter how fast we approach
infinity; however if the integral diverges this will give us the wrong answer
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* Example: rdx

If we break this up we can see this integral obviously doesn’t converge
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But if / zdx = lim z dx
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We get zero because we happen to approach the two limits at the same rate
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If instead lim rdx = lim (4() — b)
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— If this integral was one-sided it wouldn’t matter at what rate we approach infinity

e We can also have improper integrals where the interval contains a discontinuity
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— Suppose hm f(z) = oo then we can still deﬁne/ flx)dx = hm / f(z)dz

e When the dlscontlnulty is in the middle, break up the integral at the dleOntIDUIty, both pieces need to
converge for the improper integral to converge
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— If we have a discontinuity at z, then/ fz)dz = hm / f(z)dx + hm / flx)dx

— We need to be careful because if we just plugged in the numbers as if there was no discontinuity
we would get the wrong answer
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* If we evaluate it as [—] =——--1= —3 which makes no sense as this integral should
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diverge and the function is always positive so we should never get a negative area
— When we have an integral we need to make sure the integrand has no discontinuity over the region;
if it does then we need to treat it as an improper integral

1
e For the interval 0 to 1, the - rule is the reverse; if p < 1 then the integral converges, otherwise it
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diverges
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