Lecture 34, Apr 5, 2022

Lagrange Multipliers

o In general the goal is to maximize or minimize f(x,y) subject to a constraint of g(z,y) = k
— Geometrically, picture the level curves of f(z,y) along with the curve g(z,y) = k
— A solution must lie on both g(z,y) = k and one of the level curves of f(z,y); the goal is to find
the largest ¢ such that f(x,y) = c intersects g(z,y) = k
— This happens when the two curves just touch each other at a single point, i.e. they’re tangent to
each other
* Note if they crossed, there would always be a way to choose a larger or smaller ¢ such that
they touch at a single point
o Since the curves are tangent, they share the same tangent and thus Vg || Vf or Vf = AVg; A is the
Lagrange multiplier
9(wo,y0) =k
o In the 2D case, we need to solve < f,.(xo,%0) = Ag= (0, yo)
fy(@o,90) = Agy(zo, yo)
— Together we have 3 equations and 3 unknowns zq, yg, A, SO we can solve the system
— Often we don’t care about finding A, only xg, yo
In 3D, the surfaces are tangent and share the same tangent plane so again the gradients are parallel
— In general 9(7o) = k
V(&) = AVg(do)
Example: f(z,y) = 2% — 4 on the circle 2% + y* = 1
- Vf=(2z, _2y)an = <2$>2y>
witys =1
- 21];‘0 = /\2(E0
—2y0 = A2yo
— From the second equation, either g = 0 or A = 1; from the third equation either yop =0 or A = —1
— Cases:
1. )\Zl,y():() = 19 ==*1
2. A ==-1,20=0 = Yo = £1
e Note Lagrange’s method doesn’t tell us whether we have a max or min, but it does give us all the

max/min
« Example: Maximize f(z,y,z) = zyz subject to 2° +y> + 2% = 1,2,9,2 > 0
3,3, .3
4y +2°=1
Y o ryz = A3z
yz = A3z 9
- 9 = S ayz = A3y
Tz = A3y 9
9 ryz = A3z
zy = A3z

Az? = Ay = \23
— Eliminate A = 0 possibility because if A =0, x =y = z = 0 which would be a minimum

3

1 1
g g f(lL‘,y,Z):g

o Problems of this type are easy to set up, but solving the system of equations is complicated

Plugging this back into our constraint we get x =y = 2z =

Two Constraints Problem

o Maximize or minimize f(z,y, z) subject to g(x,y,2) = k and h(x,y,2) =c¢
— Geometrically we're trying to maximize or minimize f on the intersection between g and h
— The 3D surfaces g(z,y,2) = k and h(x,y, z) = c intersect at a curve
e Note that since the gradient is normal to a level surface, T for the intersection curve is normal to both
Vh and Vg



— Therefore T = Vh x Vg
o By the same logic as before, T' must be in the tangent plane of f at the max/min, so V f is perpendicular
to T

- Sin(ie VfLl f, it must be in the plane defined by Vg and Vh since that plane is also perpendicular
toT

- V(&) = A\Vg(Zo) + uVh(Zo) is our new equation
e The problem is now reduced to a set of 5 equations
o Example: f(x,y,z) = zy+ 2z on a circle of intersection between the plane z +y + 2z = 0 and the sphere
2y 422 =24
- Vf=(y,2,2),Vg=(1,1,1),Vh = (22, 2y, 22)
r+y+2=0
2y 422 =24
—Sy=A+u-2z
T=A+p-2y
2=A4+p-22

1
-y =2uy-2) = @-y)A+2) =0 = y=zorp=—3
— Cases:
lLLo=y = 20+2=0 = 2=-20 = 2’ +22+(-22)’=24 = 62° =24 — 2 =
+2,y==42,2=F4
* This produces the points f(2,2,—4) = —4 and f(—2,-2,4) = 12
1 T=A—y
2 p=—n =
# 2 2=A—2z
2?4 y? =24 2% =23
(x+y)? =2 +y* +22y=12=1

— r4+y=24+z2 — 242+2=0 = z=-l,z+y=1 =

= y=-11 = y=1-2 = z(1l—-2) =
1+3V5 1-3v5

—r—11=0 = x = Y=

’ 2
14+3vV5 1-3V5 1-3v5 14+3V5H
*Thisproducesthepointsf( +2\[, 2\[,1):—13andf( 2\[, +2\[,1):
-13

11 = 22

Reconstructing a Function from its Gradient

e If we have V f, how do we obtain f?

e Method 1: Integrate one of the partial derivatives, creating a “constant of integration” that’s a function
of the other variables; take the partial derivative with respect to the other variables, and compare
against the gradient to solve for the constants of integration

o Example: Vf = (14 y? +2y?)i + (z%y +y + 22y + 1))

p) 1
_ £Z1+y2+xy2 — f:m+xy2+§w2y2+¢(y)

* Note the constant of integration here is a “constant” with respect to z only, meaning it could
be any function of y

0
— Now differentiate: 8—; =2y + 2Py + ¢ (y) =2y +y+2ey+1 = dy)=y+1 = oy) =

%y2 +y+C
2, 1 o Ly

— Therefore f(z,y) =z + zy” + 2% Y+ Y +y+C
e Method 2: Integrate all partial derivatives, and match the terms to get the final expression
o Example: Vf = (cosx — ysinz)i + (cosz + 22)] + (2y2)k

— fe=cosx —ysine = f=sinz+ycosx + ¢1(y, 2)

— fy=cosx + 22 = f=ycosz+yz? + ¢po(x, 2)

- fi=2yr = [= yz2 + ¢3($,y)



— Since all 3 of these have to be true, we can conclude that f(x,y,2) = sinz + ycosz + yz> + C
o Not all P(z,)i + Q(z,y); are gradients!
— Example: Vf(z,y) =yi —x)
* fe=y = facy =1
*fy=—v = fyz=-1
0% f o%f
Oyox 7 0x0y
* Since mixed partials do not agree, but all derivatives are continuous, this contradicts Clairaut’s
theorem so f could not exist
o Theorem: Let P and Q be functions of two variables, each continuous and differentiable, then P(z,y)i +

A oL OP _0Q
Q(z,y)j is a gradient iff yy(%y) = 5 (&:Y)

*

2 2 2 2
— In 3 dimensions, we need to apply this 3 times (comparing ai 8fy = 863/ é’; and 883/ gz = ;; gy a

*f _ 9*f , . .
9207 — B2 63:)’ but there’s no need for the third order partials

nd
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