
Lecture 34, Apr 5, 2022
Lagrange Multipliers

• In general the goal is to maximize or minimize f(x, y) subject to a constraint of g(x, y) = k
– Geometrically, picture the level curves of f(x, y) along with the curve g(x, y) = k
– A solution must lie on both g(x, y) = k and one of the level curves of f(x, y); the goal is to find

the largest c such that f(x, y) = c intersects g(x, y) = k
– This happens when the two curves just touch each other at a single point, i.e. they’re tangent to

each other
* Note if they crossed, there would always be a way to choose a larger or smaller c such that

they touch at a single point
• Since the curves are tangent, they share the same tangent and thus ∇g ∥ ∇f or ∇f = λ∇g; λ is the

Lagrange multiplier

• In the 2D case, we need to solve


g(x0, y0) = k

fx(x0, y0) = λgx(x0, y0)
fy(x0, y0) = λgy(x0, y0)

– Together we have 3 equations and 3 unknowns x0, y0, λ, so we can solve the system
– Often we don’t care about finding λ, only x0, y0

• In 3D, the surfaces are tangent and share the same tangent plane so again the gradients are parallel

– In general
{

g(x⃗0) = k

∇f(x⃗0) = λ∇g(x⃗0)
• Example: f(x, y) = x2 − y2 on the circle x2 + y2 = 1

– ∇f = (2x, −2y), ∇g = (2x, 2y)

–


x2

0 + y2
0 = 1

2x0 = λ2x0

−2y0 = λ2y0
– From the second equation, either x0 = 0 or λ = 1; from the third equation either y0 = 0 or λ = −1
– Cases:

1. λ = 1, y0 = 0 =⇒ x0 = ±1
2. λ = −1, x0 = 0 =⇒ y0 = ±1

• Note Lagrange’s method doesn’t tell us whether we have a max or min, but it does give us all the
max/min

• Example: Maximize f(x, y, z) = xyz subject to x3 + y3 + z3 = 1, x, y, z ≥ 0

–


x3 + y3 + z3 = 1
yz = λ3x2

xz = λ3y2

zy = λ3z2

=⇒


xyz = λ3x2

xyz = λ3y2

xyz = λ3z2

– λx3 = λy3 = λz3

– Eliminate λ = 0 possibility because if λ = 0, x = y = z = 0 which would be a minimum
– x3 = y3 = z3 =⇒ x = y = z

– Plugging this back into our constraint we get x = y = z = 3

√
1
3 =⇒ f(x, y, z) = 1

3
• Problems of this type are easy to set up, but solving the system of equations is complicated

Two Constraints Problem
• Maximize or minimize f(x, y, z) subject to g(x, y, z) = k and h(x, y, z) = c

– Geometrically we’re trying to maximize or minimize f on the intersection between g and h
– The 3D surfaces g(x, y, z) = k and h(x, y, z) = c intersect at a curve

• Note that since the gradient is normal to a level surface, T⃗ for the intersection curve is normal to both
∇h and ∇g
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– Therefore T⃗ = ∇h × ∇g
• By the same logic as before, T⃗ must be in the tangent plane of f at the max/min, so ∇f is perpendicular

to T⃗
– Since ∇f ⊥ T⃗ , it must be in the plane defined by ∇g and ∇h since that plane is also perpendicular

to T⃗
– ∇f(x⃗0) = λ∇g(x⃗0) + µ∇h(x⃗0) is our new equation

• The problem is now reduced to a set of 5 equations
• Example: f(x, y, z) = xy + 2z on a circle of intersection between the plane x + y + z = 0 and the sphere

x2 + y2 + z2 = 24
– ∇f = (y, x, 2), ∇g = (1, 1, 1), ∇h = (2x, 2y, 2z)

–



x + y + z = 0
x2 + y2 + z2 = 24
y = λ + µ · 2x

x = λ + µ · 2y

2 = λ + µ · 2z

– (x − y) = 2µ(y − x) =⇒ (x − y)(1 + 2µ) = 0 =⇒ y = x or µ = −1
2

– Cases:
1. x = y =⇒ 2x + z = 0 =⇒ z = −2x =⇒ x2 + x2 + (−2x)2 = 24 =⇒ 6x2 = 24 =⇒ x =

±2, y = ±2, z = ∓4
* This produces the points f(2, 2, −4) = −4 and f(−2, −2, 4) = 12

2. µ = −1
2 =⇒

{
x = λ − y

2 = λ − z
=⇒ x+y = 2+z =⇒ 2+z+z = 0 =⇒ z = −1, x+y = 1 =⇒{

x2 + y2 = 24 − z2 = 23
(x + y)2 = x2 + y2 + 2xy = 12 = 1

=⇒ xy = −11 =⇒ y = 1 − x =⇒ x(1 − x) =

−11 =⇒ x2 − x − 11 = 0 =⇒ x = 1 ± 3
√

5
2 , y = 1 − 3

√
5

2
* This produces the points f

(
1 + 3

√
5

2 ,
1 − 3

√
5

2 , 1
)

= −13 and f

(
1 − 3

√
5

2 ,
1 + 3

√
5

2 , 1
)

=
−13

Reconstructing a Function from its Gradient
• If we have ∇f , how do we obtain f?
• Method 1: Integrate one of the partial derivatives, creating a “constant of integration” that’s a function

of the other variables; take the partial derivative with respect to the other variables, and compare
against the gradient to solve for the constants of integration

• Example: ∇f = (1 + y2 + xy2)̂i + (x2y + y + 2xy + 1)ĵ
– ∂f

∂x
= 1 + y2 + xy2 =⇒ f = x + xy2 + 1

2x2y2 + ϕ(y)
* Note the constant of integration here is a “constant” with respect to x only, meaning it could

be any function of y

– Now differentiate: ∂f

∂y
= 2xy + x2y + ϕ′(y) = x2y + y + 2xy + 1 =⇒ ϕ′(y) = y + 1 =⇒ ϕ(y) =

1
2y2 + y + C

– Therefore f(x, y) = x + xy2 + 1
2x2y + 1

2y2 + y + C

• Method 2: Integrate all partial derivatives, and match the terms to get the final expression
• Example: ∇f = (cos x − y sin x)̂i + (cos x + z2)ĵ + (2yz)k̂

– fx = cos x − y sin x =⇒ f = sin x + y cos x + ϕ1(y, z)
– fy = cos x + z2 =⇒ f = y cos x + yz2 + ϕ2(x, z)
– fz = 2yz =⇒ f = yz2 + ϕ3(x, y)
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– Since all 3 of these have to be true, we can conclude that f(x, y, z) = sin x + y cos x + yz2 + C
• Not all P (x, y)̂i + Q(x, y)ĵ are gradients!

– Example: ∇f(x, y) = yî − xĵ
* fx = y =⇒ fxy = 1
* fy = −x =⇒ fyx = −1

* ∂2f

∂y∂x
̸= ∂2f

∂x∂y
* Since mixed partials do not agree, but all derivatives are continuous, this contradicts Clairaut’s

theorem so f could not exist
• Theorem: Let P and Q be functions of two variables, each continuous and differentiable, then P (x, y)̂i +

Q(x, y)ĵ is a gradient iff ∂P

∂y
(x, y) = ∂Q

∂x
(x, y)

– In 3 dimensions, we need to apply this 3 times (comparing ∂2f

∂x∂y
= ∂2f

∂y∂x
and ∂2f

∂y∂z
= ∂2f

∂z∂y
and

∂2f

∂x∂z
= ∂2f

∂z∂x
), but there’s no need for the third order partials
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