
Lecture 29, Mar 25, 2022
Redefining the Derivative

• A partial derivative only gives the rate of change along one of the axes; to define differentiability for a
multivariable function, we need to consider all directions

• If we try to simply extend the definition of a derivative as lim
h⃗→0⃗

f(x⃗0 + h⃗) − f(x⃗)
h⃗

we run into the problem

of dividing by a vector; if we change it to
∥∥∥h⃗

∥∥∥ instead, we lose information about the direction; thus we
need to reinvent the derivative

• Definition: Little o notation: g(h) = o(h) if lim
h→0

g(h)
|h|

= 0, i.e. g(h) goes to 0 faster than h goes to 0

– Big O is used to indicate that two things are the same order of magnitude; little o is used for
different orders of magnitude

• In one dimension, f ′(x) = lim
h→0

f(x + h) − f(x)
h

=⇒ lim
h→0

f(x + h) − f(x) − f ′(x)h
h

= 0

=⇒ (f(x + h) − f(x)) − f ′(x)h = o(h)
– Example: f(x) = x2

* f(x + h) − f(x) = (x + h)2 − x2 = (2x)h + h2

* By our definition 2x is f ′ if h2 is o(h)

* lim
h→0

h2

h
= lim

h→0
h = 0 =⇒ h2 = o(h)

Differentiability in Multiple Dimensions

• Extending our definition of little o to multiple variables: lim
h⃗→0⃗

g(⃗h)∥∥∥h⃗
∥∥∥ = 0 =⇒ g(⃗h) = o(⃗h)

• Definition: f is differentiable at x⃗ ⇐⇒ ∃y⃗ ∋ f(x⃗ + h⃗) − f(x⃗) = y⃗ · h⃗ + o(⃗h)
– y⃗ = ∇f(x⃗) is the gradient of f⃗

• Example: f(x, y) = x + y2

– Let h⃗ = (h1, h2)
– f(x⃗ + h⃗) − f(x⃗) = f(x + h1, y + h2) − f(x, y)

= x + h1 + (y + h2)2 − x − y2

= h1 + 2yh2 + h2
2

= (1̂i + 2yĵ) · h⃗ + h2
2

– Let g(⃗h) = h2
2 = h2ĵ · h⃗ =⇒ |g(⃗h)|∥∥∥h⃗

∥∥∥ =

∥∥∥h2ĵ
∥∥∥∥∥∥h⃗

∥∥∥ cos θ∥∥∥h⃗
∥∥∥ ≤ |h2| =⇒ lim

h⃗→0⃗

|g(⃗h)|∥∥∥h⃗
∥∥∥ = 0

– Since g is o(⃗h) the gradient is 1̂i + 2yĵ

• Theorem: ∇f(x, y, z) = ∂f

∂x
î + df

dy
ĵ + df

dz
k̂

– Note f(x⃗) is a vector but ∇f(x⃗) is a vector
– If the gradient exists, then the function is differentiable at that point

• The gradient points in the direction of steepest ascent

Directional Derivatives
• The idea of a partial derivative can be extended beyond just the axes
• Definition: The directional derivative of f at x⃗0 in the direction of û is fû(x⃗0) = lim

h→0

f(x⃗0 + hû) − f(x⃗0)
h

1



– Note û is a unit vector by definition
• The direction derivative is related to the gradient: fû(x⃗0) = ∇f(x⃗0) · û

– Proof: f(x⃗ + h⃗) − f(x⃗) = ∆f(x⃗)⃗h + o(⃗h)
* Choose h⃗ = hû where h =

∥∥∥h⃗
∥∥∥ =⇒ f(x⃗ + hû) − f(x⃗) = ∇f(x⃗) · hû + o(⃗h) =⇒

lim
h→0

f(x⃗ + hû) − f(x⃗)
h

= lim
h→0

∇f(x⃗) · û + o(⃗h)
h

=⇒ fû = ∇f(x⃗0) · û

• Example: Parabolic hill z(x, y) = 20 − x2 − y2

• Note: |fû(x⃗)| = |∇f · û| = ∥∇f∥∥û∥|cos θ| ≤ ∥∇f∥
– The rate of change along any direction is always less than or equal to the rate of change along the

gradient
– Max rate of change happens for θ = 0, i.e. û pointing in the direction of ∇f
– This shows that the gradient points in the direction with the greatest rate of change

• Example: Project the path of steepest descent to the xy plane: z = f(x, y) = A + x + 2y − x2 − 3y2

from (0, 0, A)
– ∇f = (1 − 2x)̂i + (2 − 6y)ĵ =⇒ −∇f = (2x − 1)̂i + (6y − 2)ĵ
– Consider the curve r⃗(t) = x(t)̂i + y(t)ĵ; we always want it to point in the direction of steepest

descent so x′(t), y′(t) should be in the opposite direction of the gradient

–
{

x′(t) = 2x(t) − 1
y′(t) = 6y(t) − 2

=⇒ dy

dx
= 6y − 2

2x − 1
– This is a separable differential equation; solving gives 6y − 2 = (2x − 1)3eC ; plugging in the initial

point we get eC = 2

– y = (2x − 1)3

3 = 1
3
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