Lecture 25, Mar 15, 2022

Motion in Space: Velocity and Acceleration

- Interpret $\vec{r}(t)$ as the location, then $\vec{r}'(t) = \vec{v}(t)$ is the velocity and $\vec{r}''(t) = \vec{a}(t)$ is the acceleration and $\frac{\mathrm{d}s}{\mathrm{d}t} = \|\vec{r}'(t)\|$ is the speed
- For circular motion around the origin $\vec{r}(t) = a\cos(\theta(t))\hat{i} + a\sin(\theta(t))\hat{j}$
 - $-\theta'$ is the rate of change of the angle, so $\theta' > 0$ is a counterclockwise movement
 - Define θ' as the angular velocity in radians per second; $|\theta'|$ is the angular speed
 - * Note θ' is essentially a scalar property but with a sign

If
$$\theta' = \omega$$
 then $\theta = \omega t$
 $\implies \vec{r} = r \cos(\omega t)\hat{i} + r \sin(\omega t)\hat{j}$
 $\implies \vec{v} = -r\omega \sin(\omega t)\hat{i} + r\omega \cos(\omega t)\hat{j}$
 $\implies \vec{a} = -r\omega^2 \cos(\omega t)\hat{i} - r\omega^2 \sin(\omega t)\hat{j} = -\omega^2 \vec{r}$

Vector Mechanics

- Newton's second law: $\vec{F}(t) = m\vec{a}(t)$
- Momentum: $\vec{p}(t) = m\vec{r}'(t)$ and $\vec{p}'(t) = \vec{F}(t)$
- Conservation of momentum: $\vec{p}' = \vec{F} = 0 \implies \vec{p}$ is constant
- Angular momentum: $\vec{L} \equiv \vec{r} \times \vec{p} = m\vec{r} \times \vec{v}$ where \vec{r} is the radius vector
 - $\|\vec{L}\| = m\|\vec{r}\|\|\vec{v}\|\sin(\theta(t))$ where θ is the angle between \vec{v} and \vec{r}
 - We can break up $\vec{v} = \vec{v}_{\perp} + \vec{v}_{\parallel}$ (directions perpendicular and parallel to \vec{r})
 - $\vec{L} = m\vec{r} \times \vec{v} = m\vec{r} \times (\vec{v}_{\perp} + \vec{v}_{\parallel}) = m\vec{r} \times \vec{v}_{\perp} \text{ since } \vec{r} \times \vec{v}_{\parallel} = 0$
 - Angular momentum only cares about the component of \vec{v} perpendicular to \vec{r}
- Example: $\vec{r}(t) = r \cos(\omega t)\hat{i} + r \sin(\omega t)\hat{j}$
 - $-\vec{L} = m\vec{r} \times \vec{v} = m(0, 0, r^2\omega\cos^2(\omega t) + r^2\omega\sin^2(\omega t)) = (0, 0, mr^2\omega)$
- Example: Uniform motion in a straight line
 - $-\vec{r_1} = \vec{r_0} + t\vec{v}$
 - $-\vec{L} = m\vec{r} \times \vec{v} = m(\vec{r_0} + t\vec{v}) \times \vec{v} = m\vec{r_0} \times \vec{v}$ which is a constant assuming \vec{v} is constant
 - Uniform motion in a straight line has a constant angular momentum
- Torque: $\vec{L}' = m\vec{r} \times \vec{r}'' + m\vec{r}' \times \vec{r}' = \vec{r} \times \vec{F} \equiv \vec{\tau}$
- Central force: Definition: \vec{F} is a *central* or *radial force* if $\vec{F}(t)$ is always parallel to \vec{r}
 - Example: gravity, electric field associated with a point charge
 - $-\vec{r} \times \vec{F} = 0 \implies \tau = 0 \implies \vec{L}$ is constant
 - Angular momentum is conserved when only a central force is present

Acceleration

- Break apart acceleration $\vec{a} = \vec{a}_n + \vec{a}_t$ (normal and tangential directions)

•
$$\vec{T} = \frac{\frac{d\vec{t}}{dt}}{\left\|\frac{d\vec{r}}{dt}\right\|} = \frac{\vec{v}}{\frac{ds}{dt}} \implies \vec{v} = \frac{ds}{dt}\vec{T}$$

- Differentiating, we get $\vec{v}' = \vec{a} = \frac{d^2s}{dt^2}\vec{T} + \frac{ds}{dt}\frac{d\vec{T}}{dt}$
- Note $\frac{d\vec{T}}{dt} = \left\|\frac{d\vec{T}}{dt}\right\|\vec{N}$ and $\kappa = \frac{\left\|\frac{d\vec{T}}{dt}\right\|}{\left|\frac{ds}{dt}\right|}$
- $\vec{a} = \frac{d^2s}{dt^2}\vec{T} + \kappa \left(\frac{ds}{dt}\right)^2\vec{N}$
* The first term is \vec{a}_t , the tangential component

* The first term is \vec{a}_t , the tangential component, the second is \vec{a}_n , the normal component • $\|\vec{a}_t\| = \frac{\mathrm{d}^2 s}{\mathrm{d}t^2}$ which is the rate of change of speed in the direction of motion

- Example: uniform circular motion with $\frac{\mathrm{d}s}{\mathrm{d}t}$ equal to a constant so $\|\vec{a}_t\| = \frac{\mathrm{d}^2s}{\mathrm{d}t^2} = 0$ so there is no tangential acceleration
- $\begin{aligned} & \text{tangential acceleration} \\ \bullet & \|\vec{a}_n\| = \kappa \left(\frac{\mathrm{d}s}{\mathrm{d}t}\right)^2 \text{ directed perpendicular to the tangent, in the direction of curvature} \\ & \text{ Alternatively } \|\vec{a}_n\| = \frac{\|\vec{v}\|^2}{\rho} \text{ where } \rho = \frac{1}{\kappa} \text{ is the radius of curvature} \end{aligned}$