Lecture 24, Mar 14, 2022

Curvature in 2D
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¢ Definition: Curvature is defined as k = ‘¢
s

, where in 2D ¢ is the angle that the tangent line makes

with the x axis and s is arc length
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— We can also get this intuitively by noting that — = — = —
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o This leads to the definition for the radius of curvature: p = —
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— The radius of curvature is the radius of the tangent circle to the curve at any given point

« Note: Consider the unit tangent vector T' = cos(¢)i + sin(¢)]
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— This gives an alternative interpretation of curvature as the rate of change of the unit tangent
vector with respect to arc length

Curvature in 3D
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e Definition: k = Hd in 3D, where T is the unit tangent vector to the curve and s is the arc length
S

o Consider C : 7(t) = z(t)i + y(t)] + 2(t)k
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o Example: Circular helix 7(t) = 3sin(t)i + 3 cos(t)] + 4tk for t € [0, 2n]

— 7(t) = 3cos(t)i — 3sin(t)] + 4k
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The Normal and Binormal Vectors

e Definition: The principal unit normal N(t) =
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= , i.e. a unit vector in the direction of T"
7'(t)

~ T is tangent to the curve and N is perpendicular to this tangent
- N points in the direction that the curve is changing
e Definition: The osculating plane is the plane defined by Nand T
— The osculating plane is the plane that comes closest to containing the curve at a point
o Definition: The binormal vector is B =T x N
e Example: for a straight line T’ (t) = 0 since the tangent vector doesn’t change; this means N does not
exist and we can’t define an osculating plane
— This can be interpreted as a straight line is contained in an infinite number of planes
« Example: Circular helix 7(t) = 3sin(t)2 + 3 cos(t)] + 4tk for t € [0, 2n]

- T'(t) = —g sin(t); — gcos(t)j' = ‘

— N(t) = —sin(t)i — cos(t)]
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— The equation of the plane is (5 cos
4cos(t)r — 4sin(t)y — 4z = —12¢

e In general the magnitude of the binormal

- 3
e
ro-2

A point on the plane is (3sint, 3 cost, 4t)

t) (x — 3sint) — <gsint) (y — Bcost) — 2(2—4@ —0 —

vector is always 1, because HBW = HfHHN’ sinf =1

— f, N , B form a set of mutually perpendicular unit vectors

— We can use this as a new coordinate

system, useful in some physical situations e.g. satellites
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