
Lecture 23, Mar 11, 2022
Vector Derivatives and Integrals

• The derivative of a vector function is defined as f⃗ ′(t) ≡ lim
h→0

f⃗(t + h) − f⃗(t)
h

• Derivative can be taken componentwise: f⃗ ′(t) = f ′
1(t)̂i + f ′

2(t)ĵ + f ′
3(t)k̂

– Proof: f⃗ ′(t) = lim
h→0

f⃗(t + h) − f⃗(t)
h

= lim
h→0

[
f1(t + h) − f1(t)

h
î + f2(t + h) − f2(t)

h
ĵ + f3(t + h) − f3(t)

h
k̂

]
= lim

h→0

f1(t + h) − f1(t)
h

î + lim
h→0

f2(t + h) − f2(t)
h

ĵ + lim
h→0

f3(t + h) − f3(t)
h

k̂

= f ′
1(t)̂i + f ′

2(t)ĵ + f ′
3(t)k̂

• Integrals can also be defined componentwise as
� b

a

f⃗(t) dt =
(� b

a

f1(t) dt

)
î +

(� b

a

f2(t) dt

)
ĵ +(� b

a

f3(t) dt

)
k̂

• All ordinary derivative and integral properties apply:

–
� b

a

c⃗ · f⃗(t) dt = c⃗ ·
� b

a

f⃗(t) dt

–

∥∥∥∥∥
� b

a

f⃗(t) dt

∥∥∥∥∥ ≤
� b

a

∥∥∥f⃗(t)
∥∥∥dt

Differentiation Formulas
• Define a composition function (f⃗ ◦ u)(t) = f⃗(u(t))

– Note this composition can’t go the other way around, because f⃗ takes in a scalar and u takes in a
vector, so u(f⃗(t)) makes no sense

• Differentiation rules:
1. (f⃗ + g⃗)′(t) = f⃗ ′(t) + g⃗′(t)
2. (αf⃗)′(t) = αf⃗ ′(t)
3. (uf⃗)′(t) = u(t)f⃗ ′(t) + u′(t)f⃗(t)
4. (f⃗ · g⃗)′(t) = f⃗(t) · g⃗′(t) + f⃗ ′(t) · g⃗(t)
5. (f⃗ × g⃗)′(t) = f⃗(t) × g⃗′(t) + f⃗ ′(t) × g⃗(t)

– Note that for this one, order matters since cross product is non-commutative
6. (f⃗ ◦ u)′(t) = u′(t)f⃗(u(t))

• Example: r⃗ = xî + yĵ + zk̂

– Define r ≡ ∥r⃗∥ =
√

r⃗ · r⃗ =
√

x2 + y2 + z2 =⇒ r⃗ · r⃗ = r2

– r⃗ · r⃗ = r2 =⇒ dr⃗

dt
· r⃗ + r⃗ · dr⃗

dt
= 2r

dr

dt
=⇒ r⃗ · dr⃗

dt
= r

dr

dt

• Example: d
dt

r⃗

r
– This is a unit vector in the direction of r⃗; even though the magnitude is constant, the derivative

can be nonzero since the direction can change
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– d
dt

r⃗

r
= 1

r

dr⃗

dt
− 1

r2
dr

dt
r⃗

= 1
r3

(
r2 dr⃗

dt
− r

dr

dt
r⃗

)
= 1

r3

(
(r⃗ · r⃗)dr⃗

dt
−
(

r⃗ · dr⃗

dt

)
r⃗

)
= 1

r3

((
r⃗ × dr⃗

dt

)
× r⃗

)
* Note we used the relationship (⃗a × b⃗) × c⃗ = (c⃗ · a⃗)⃗b − (c⃗ · b⃗)⃗a

Curves
• r⃗(t) = x(t)̂i + y(t)ĵ + z(t)k̂
• The derivative r⃗′(t) is interpreted geometrically as a vector pointing in the tangent direction of the

curve
• Definition: Let C be parameterized by r⃗(t) = x(t)̂i + y(t)ĵ + z(t)k̂ and be differentiable; then r⃗′(t) =

x′(t)̂i + y′(t)ĵ + z′(t)k̂ (if not 0⃗) is tangent to C at (x(t), y(t), z(t)) and r⃗′(t) points in the direction of
increasing t

• Example: Find tangent to r⃗(t) = (1 + 2t)̂i + t3ĵ + t

2 k̂ at (9, 64, 2)
– First find the t value: r⃗(4) = (9, 64, 2)
– r⃗′(t) = 2̂i + 3t3ĵ + 1

2 k̂ =⇒ r⃗′(4) = 2̂i + 48ĵ + 1
2 k̂

– The tangent line is R⃗(q) = 9̂i + 64ĵ + 2k̂ + q

(
2̂i + 48ĵ + 1

2 k̂

)
• Define the unit tangent vector as T⃗ (t) ≡ r⃗′(t)

∥r⃗′(t)∥
– Note T⃗ (t) · T⃗ (t) = 1 since T⃗ is a unit vector
– Differentiating this leads to T⃗ ′(t) · T⃗ (t) = 0
– T⃗ ′(t) is always in the perpendicular direction to T⃗ ; this is because T⃗ has a constant magnitude so

the derivative can only represent a change in direction, which is always perpendicular
– T⃗ ′(t) is telling you the direction that the curve is curving, similar to how the second derivative

tells you whether the function is concave up or down

Arc Length

• Extended to 3D, arc length is
� b

a

√
(x′(t))2 + (y′(t))2 + (z′(t))2 dt =

� b

a

∥r⃗′(t)∥ dt

• Example: Circular helix r⃗(t) = 3 sin(t)̂i + 3 cos(t)ĵ + 4tk̂ for t ∈ [0, 2π]
– r⃗′(t) = 3 cos(t)̂i − 3 sin(t)ĵ + 4k̂

– ∥r⃗′(t)∥ =
√

9 cos2 t + 9 sin2 t + 16 = 5

–
� 2

0
π∥r⃗′(t)∥ dt = 10π

• Sometimes a curve is parameterized with respect to arc length instead of t
• Example: r⃗(t) = t2î + t2ĵ − t2k̂ from (0, 0, 0)

– s =
� t

0
∥r⃗′(τ)∥ dτ

=
� t

0

√
4τ2 + 4τ2 + 4τ2 dτ

=
� 3

0
2
√

3τ dτ

=
√

3t2

2



– s =
√

3t2 =⇒ t2 = s√
3

=⇒ r⃗(s) = s√
3

î + s√
3

ĵ − s√
3

k̂
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