Lecture 23, Mar 11, 2022

Vector Derivatives and Integrals
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« Derivative can be taken componentwise: f'(t) = f1(t)i + f3(t)j + f4(t)k
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o Integrals can also be defined componentwise as / flt)dt = (/ f1(®) dt> i+ </ fa(t) dt) J+
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e All ordinary derivative and integral properties apply:
b

—

*f()dt—s/f(t)dt

/fdt

Differentiation Formulas
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« Define a composition function (fou)(t) = f(u(t))
— Note this composition can’t go the other way around, because f takes in a scalar and u takes in a
vector, so u(f(t)) makes no sense
o Differentiation rules:
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5. (fxg)(t)= g+ f(t) x gt
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or thls one, order matters since cross product is non-commutative

6(ﬁwﬂﬂzwf(%m

d
o Example: aer

— This is a unit vector in the direction of 7} even though the magnitude is constant, the derivative
can be nonzero since the direction can change
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Curves

F(t) = ()i + y(1)] + 2(t)k
The derivative 7 (t) is interpreted geometrically as a vector pointing in the tangent direction of the
curve
Definition: Let C' be parameterized by 7(t) = z(t)i 4+ y(t)] + z(t)k and be differentiable; then #(t) =
' ()i + 9 (t)7 + 2/ (t)k (if not 0) is tangent to C at ((t),y(t), z(t)) and 7 (t) points in the direction of
increasing t
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Example: Find tangent to #(t) = (1 + 2t)i + 35 + §k at (9,64,2)

— First find the ¢ Value 7(4) = (9,64,2)
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— The tangent line is R(q) =91+ 647 4 2k + ¢ <2i + 485 + 2k>
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Note T'(t) - T(t) = 1 since T is a unit vector

~ Differentiating this leads to 7" (t) - T'(t) = 0

- f’(t) is always in the perpendicular direction to f; this is because T has a constant magnitude so
the derivative can only represent a change in direction, which is always perpendicular

- f’(t) is telling you the direction that the curve is curving, similar to how the second derivative
tells you whether the function is concave up or down

X

Define the unit tangent vector as f(t) =

Arc Length

b
o Extended to 3D, arc length is / \/(x/(t))Q + (/) + )2dt = / |7 ()| dt
o Example: Circular helix 7(t) = SSin(t)% + 3 cos(t ) L dthfort e 0, 27]
o HFI(t)” = \/9COS2 t+ 95in2 t+16=5
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e Sometimes a curve is parameterized with respect to arc length instead of ¢
o Example: #(t) = t%i + t2j — t?k from (0,0,0)
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