Lecture 22, Mar 8, 2022

Surfaces: Cylinders and Quadric Surfaces

- Quadric surfaces are in the form $Ax^2 + By^2 + Cz^2 + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0$
 - Gx + Hy + Iz offsets the shape in the axial directions
 - Dxy + Exz + Fyz terms rotate the shape
- Cylinders are 2D surfaces with no z defined
- Properties of quadric surfaces:
 - 1. Domain/range
 - Typically domain involves x and y, range involves z, but not always
 - 2. Intercepts with coordinate axes (all 3)
 - 3. Traces intersections with coordinate planes
 - 4. Sections intersections with other planes (typically a plane parallel to the coordinate planes)
 - 5. Centre
 - 6. Symmetry
 - 7. Bounded/unboundedness

• Example: Hyperboloid of two sheets: $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1 \implies z = \pm c\sqrt{1 + \frac{x^2}{a^2} + \frac{y^2}{b^2}}$ 1. Domain: $x, y \in (-\infty, \infty)$; range: $z \ge c$ or $z \le -c$ (since the number in the root is always greater

- 1. Domain: $x, y \in (-\infty, \infty)$; range: $z \ge c$ or $z \le -c$ (since the number in the root is always greater than 1)
- 2. Intercepts: z intercept at $z = \pm c$ (when x = y = 0) (we can't have z = 0 so it can't have other intercepts)
- 3. Traces:
 - xy plane (z = 0): nothing

-
$$xz$$
 plane $(y = 0)$: hyperbola $z = \pm c\sqrt{1 + \frac{x^2}{a^2}}$
- yz plane $(x = 0)$: hyperbola $z = \pm c\sqrt{1 + \frac{y^2}{b^2}}$

- 4. Sections: consider $z = z_0$ where $|z_0| > c$: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z_0^2}{c^2} 1$ where $\frac{z_0^2}{c^2} 1 > 0$, which is an ellipse
- 5. Centre: origin because there are no offset terms
- 6. Symmetry: $x \to -x, y \to -y, z \to -z$ all give the same surface so symmetry about each axis
- 7. Unbounded in all directions

Projections

- For 2 intersecting surfaces, we will have a curve of intersection C: (x, y, z) such that z = f(x, y) = g(x, y)– The relation f(x, y) = g(x, y) is a vertical cylinder since there are no restrictions on z
- Fix z = 0 and have f(x, y) = g(x, y) = 0; this is a projection (like a shadow of the curve of intersection)

• Example: cone
$$x^2 + y^2 = 2z^2 \implies z = \pm \sqrt{\frac{x^2 + y^2}{2}}$$
 and a plane $y + 4z = 5 \implies z = \frac{5 - y}{4}$
- Set $\sqrt{\frac{x^2 + y^2}{2}} = \frac{5 - y}{4}$
 $\implies (5 - y)^2 = 8(x^2 + y^2)$
 $\implies 25 - 10y + y^2 = 8x^2 + 8y^2$
 $\implies 8x^2 + 7y^2 + 10y - 25 = 0$
 $\implies \frac{x^2}{\frac{25}{7}} + \frac{(y + \frac{5}{7})^2}{\frac{200}{49}} = 1$

– This is an offset ellipse

Vector Functions and Limits

- A vector valued function or vector function is $\vec{f}(t) = f_1(t)\hat{i} + f_2(t)\hat{j} + f_3(t)\hat{k} = (f_1(t), f_2(t), f_3(t))$ - Like a parametric representation
- LINE a parametric representation
 Definition: lim_{t→t0} f(t) = L if lim_{t→t0} || f(t) L || = 0
 The norm turns the vector limit into an ordinary limit
 lim_{t→t0} f(t) = L ⇒ lim_{t→t0} || f(t) || = ||L || but the reverse is not true
 Limit rules: Given lim_{t→t0} f(t) = L, lim_{t→t0} g(t) = M, lim_{t→t0} u(t) = R:
 lim_{t→t0} f(t) + g(t) = L + M
- - 2. $\lim_{t \to t_0} \alpha \vec{f}(t) = \alpha \vec{L}$

 - 3. $\lim_{t \to t_0} u(t) \vec{f}(t) = R \vec{L}$ 4. $\lim_{t \to t_0} \vec{f}(t) \cdot \vec{g}(t) = \vec{L} \cdot \vec{M}$
 - 5. $\lim_{t \to t_0} \vec{f}(t) \times \vec{g}(t) = \vec{L} \times \vec{M}$
- $\lim_{t \to t_0} \vec{f}(t) = \vec{L}$ iff $\lim_{t \to t_0} f_1(t) = L_1$, $\lim_{t \to t_0} f_2(t) = L_2$, $\lim_{t \to t_0} f_3(t) = L_3$ $\vec{f}(t)$ is continuous at t_0 if $\lim_{t \to t_0} \vec{f}(t) = \vec{f}(t_0)$
- Likewise the continuity of \vec{f} depends on the continuity of its component