Lecture 19, Mar 1, 2022

Multiplication and Division of Power Series

• Example: $\frac{e^x}{1-x}$

- We can find its Taylor expansion by multiplying two series together: $\left(1 + x + \frac{x^2}{2!} + \cdots\right)\left(1 + x + x^2 + \cdots\right)$

• Generally the radius of convergence of a product or ratio is the smaller of the two radii

Example:
$$\tan x = \frac{\sin x}{\cos x}$$

 $-\frac{x - \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots}{1 - \frac{x^2}{2} + \frac{x^4}{4!} + \cdots}$
- Note here the radius of convergence is $|x| < \frac{\pi}{2}$

Applications of Taylor Polynomials

- Error bounds can be found for Taylor approximations:
 - 1. If it's an alternating series, then like all alternating series the error bound is just the next term
 - 2. Otherwise, the error bound can be computed using Taylor's theorem $R_n = \int_a^x \frac{(t-a)^n}{n!} f^{(n+1)}(t) dt < 0$

$$M\frac{(x-a)^{n+1}}{(n+1)!}$$

• Example: Using the Taylor expansion of \sqrt{x} about a = 1, evaluate $\sqrt{1.25}$ - Derivatives:

$$\begin{array}{l} * \ f(x) = x^{\frac{1}{2}} \implies f(1) = 1 \\ * \ f'(x) = \frac{1}{2}x^{-\frac{1}{2}} \implies f'(1) = \frac{1}{2} \\ * \ f''(x) = -\frac{1}{4}x^{-\frac{3}{2}} \implies f''(1) = -\frac{1}{4} \\ * \ f'''(x) = \frac{3}{8}x^{-\frac{5}{2}} \implies f'''(1) = \frac{3}{8} \\ * \ f''''(x) = -\frac{15}{16}x^{-\frac{7}{2}} \implies f''''(1) = \frac{-15}{16} \\ - \ \sqrt{x} \approx T_3(x) = 1 + \frac{1}{2}(x-1) - \frac{1}{4}\frac{(x-1)^2}{2!} + \frac{3}{8}\frac{(x-1)^3}{3!} \\ * \ \text{Since this is an alternating series: } |R_3(x)| < |a_4| = \frac{15}{16}\frac{(x-1)^4}{4!} \\ - \ \sqrt{1.25} \approx 1.11816 \pm 0.00015 \end{array}$$

• Example: Maximum error for the Maclaurin series of $\cos x$ for $|x| < \frac{\pi}{4}$ for n = 3

$$-\cos x \approx T_3(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!}$$

- Another alternating series, so the uncertainty is $|R_3(x)| < \frac{x^8}{8!} < \frac{\left(\frac{\pi}{4}\right)^8}{8!} = 3.6 \times 10^{-6}$

- Alternatively, using the Taylor remainder formula $|R_3(x)| < 1 \left| \frac{x^8}{8!} \right|$
- Example: Find $\ln(1.4)$ to within 0.001 with $\ln(1-x)$

$$-\ln(1-x) = -x - rac{x^2}{2} - rac{x^3}{3} - \cdot$$

- When x is negative this is an alternating series so we can use the next term as an error bound - $|R_5(x)| = \left|\frac{x^6}{6}\right| = \frac{0.4^6}{6} = 0.0007$ so we need to take 5 terms