Lecture 18, Feb 28, 2022

Taylor’s Theorem

e When is a function actually equal to its Taylor expansion?

noof@) )
— Define a partial sum for the Taylor series: T, (z) = ! i'(a) (z — a)" (the n-th degree Taylor
i=0 )
polynomial of f about a)
— Define the remainder as R, (z) = f(x) — Tn(x)
o Theorem: If f(x) = T, (x) + R, (z) and li_{n R, () = 0 then f is equal to its Taylor series expansion
o Taylor’s Theorem: Given f/, f”,---, f (n+1) exists and are continuous on an open interval I, and a € I,
1 x
then ¥z € I, f(z) = T(x) + Ro(z) where Ry (z) = ﬁ/ FOED (@) (@ — 1) dt

— Proof: )
* Consider: / f'(t)dt = f(b) — f(a) by FTC
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* Integration by parts: / ft)ydt = [f'(t)(t —b)] / f(z)(t —b)d
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* Applying this n times: / f(t)dt = Z Wf(”(a)—i—/ %f("ﬂ) (t)dt = f(b)—f(a)
a i=1 : a :

*letz =0 = f(z) = Z Wf(i)(a) + R, (z) where R,(z) = /I Wf("ﬂ)(t) dt

=0 a
o To prove that a function is equal to its Taylor series we need to prove lim R,(z) =
n—oo

xT _ t n
lim Q f("H)(a:) dt = 0; the integral form is not always the most convenient to
n—o00 n!
work with

— If we can bound the derivative: For [f@+V(¢)] < M fora < t < z: |Rp(z
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— Or using the MVT, R, (z) = / ((;)fl)!a) for ¢ € (a,x)
o Example: Prove e” is equal to the sum of its Taylor series
SR ARRIOET
— For a Taylor series about 0 therangeis0 <t <z = e <e* =M, otz <t<0 = e <1=M
T .n+1
~— Ry(z) < % . 0 (by sequence limit 4)

— Since the remainder goes to 0 the Taylor series converges to e® for all x



Taylor Series Examples

e Example: Maclaurin series for cosz
— f(z) =cosz = f(0)=1
- f'(z) = —sinz = f'(O) =0
~ f"(z) = —cosz = f"(0)=-1
— f(z) =sinz = f"(z) =0
— f""(x) = cosz so the cycle repeats

2?2zt af
—cosz=1-— o7 + T + - -+ because all the odd terms are zero
~ Use ratio test to determine radius of convergence (all z)
xn+1
— Note for all derivatives the magnitude is always < 1: |R,(z)| < |——| — 0 so the Taylor

series sum to cosx
e As long as the derivative doesn’t tend to infinity, R, always goes to 0
 Since the coeflicients of a Taylor series are unique we can obtain them in other methods; e.g. differentiating
the series of cosz to get sinx or multiplying by = to get xsinx

™
o Example: Taylor series for cosz about —

— This series is useful despite the series for cosx converging for all x due to rate of convergence

— Derivatives:
177

* f(z) =cosz = f( 1 >—\}§
*f'(m):—sinx:>f<m):—
* f(z) = —cosx = f(wﬂ) _ 1

V2
£ f(z) = sing —> f<11ﬂ'):12
mrr N 17m\ 1
* M (x) = cosx:>f<4>\/§

* There are two negatives and two positives alternating so we need to use 2 sums
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o Example: Prove In(1+z) = i D for x € (—1,1]
— Derivatives: "
* f(z) =In(1+2)
) =
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P =
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fi() = (1+2)"

— We can’t bound this derivative in —1 < z < 1 because as z tends to —1 the derivative shoots off
to infinity, so we need to work with the integral form



CRa@ =2 [ 5 0@ -t ar

n! Jo

1 [* n!

[ B Y S S AL
n!/o( ) (1+t)n+1(x )

_ n * (‘r_t)n
-0 [ i

v (g —t)n z 1
—For0<z<I: |Rn(l‘)|=/ 71dt§/(x—t)"dt: — Osince z <1
o (I+¢)mt 0 n+1 n—eo

— For —1 <2 <0: |Ry(x)] =

0
* Apply MVT:/ (

interval width [f —a
* To show —— < 1: lz] <1
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(—z), where < z < 0 and —z is the
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