Lecture 18, Feb 28, 2022

Taylor's Theorem

- When is a function actually equal to its Taylor expansion?
 - Define a partial sum for the Taylor series: $T_n(x) = \sum_{i=0}^n \frac{f^{(i)}(a)}{i!}(x-a)^i$ (the n-th degree Taylor polynomial of f about a)
 - Define the remainder as $R_n(x) = f(x) T_n(x)$
- Theorem: If $f(x) = T_n(x) + R_n(x)$ and $\lim_{n \to \infty} R_n(x) = 0$ then f is equal to its Taylor series expansion Taylor's Theorem: Given $f', f'', \dots, f^{(n+1)}$ exists and are continuous on an open interval I, and $a \in I$, then $\forall x \in I, f(x) = T_n(x) + R_n(x)$ where $R_n(x) = \frac{1}{n!} \int_a^x f^{(n+1)}(t)(x-t)^n dt$
 - Proof: * Consider: $\int_{a}^{b} f'(t) dt = f(b) - f(a)$ by FTC * Integration by parts: $\int_a^b f'(t) dt = \left[f'(t)(t-b)\right]_a^b - \int_a^b f''(x)(t-b) dt$ $= f'(a)(b-a) + \int_{a}^{b} f''(t)(b-t) \, \mathrm{d}t$ $= f'(a)(b-a) + \left[-\frac{(b-t)^2}{2} f''(t) \right]^b + \int^b \frac{(b-t)^2}{2} f'''(t) \, \mathrm{d}t$ $= f'(a)(b-a) + f''(a)\frac{(b-a)^2}{2!} + \int^b \frac{(b-t)^2}{2} f'''(t) dt$

* Applying this *n* times:
$$\int_{a}^{b} f'(t) dt = \sum_{i=1}^{n} \frac{(b-a)^{i}}{i!} f^{(i)}(a) + \int_{a}^{b} \frac{(b-t)^{n}}{n!} f^{(n+1)}(t) dt = f(b) - f(a)$$

* Let $x = b \implies f(x) = \sum_{i=0}^{n} \frac{(x-a)^{i}}{i!} f^{(i)}(a) + R_{n}(x)$ where $R_{n}(x) = \int_{a}^{x} \frac{(x-t)^{n}}{n!} f^{(n+1)}(t) dt$

• To prove that a function is equal to its Taylor series we need to prove $\lim_{n \to \infty} R_n(x) =$ $\lim_{n \to \infty} \int_{a}^{x} \frac{(x-t)^{n}}{n!} f^{(n+1)}(x) dt = 0;$ the integral form is not always the most convenient to work with

- If we can bound the derivative: For $|f^{(x+1)}(t)| \le M$ for a < t < x: $|R_n(x)| \le \int_{-\infty}^{\infty} \frac{M(x-t)^n}{n!} dt$ $= \left| M \left[\frac{(x-t)^{n+1}}{(n+1)!} \right]_a^x \right|$ $=M\frac{|x-a|^{n+1}}{(n+1)!}$

- Or using the MVT, $R_n(x) = \frac{f^{(n+1)}(c)(x-a)^{n+1}}{(n+1)!}$ for $c \in (a, x)$
- Example: Prove e^x is equal to the sum of its Taylor series
 - $-f^{(n+1)}(t) = e^t$
 - For a Taylor series about 0 the range is $0 < t < x \implies e^t < e^x = M$, or $x < t < 0 \implies e^t < 1 = M$ $-R_n(x) \leq \frac{e^x x^{n+1}}{(n+1)!} \underset{n \to \infty}{\to} 0 \text{ (by sequence limit 4)}$
 - Since the remainder goes to 0 the Taylor series converges to e^x for all x

Taylor Series Examples

- Example: Maclaurin series for $\cos x$
 - $-f(x) = \cos x \implies f(0) = 1$

 - $-f'(x) = -\sin x \implies f'(0) = 0$ $-f''(x) = -\cos x \implies f''(0) = -1$ $-f'''(x) = \sin x \implies f'''(x) = 0$
 - $-f''''(x) = \cos x$ so the cycle repeats

 $-\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$ because all the odd terms are zero - Use ratio test to determine radius of convergence (all x)

- Note for all derivatives the magnitude is always ≤ 1 : $|R_n(x)| \leq \left|\frac{x^{n+1}}{(n+1)!}\right| \xrightarrow[n \to \infty]{} 0$ so the Taylor series sum to $\cos x$ series sum to $\cos x$
- As long as the derivative doesn't tend to infinity, R_n always goes to 0
- Since the coefficients of a Taylor series are unique we can obtain them in other methods; e.g. differentiating ٠ the series of $\cos x$ to get $\sin x$ or multiplying by x to get $x \sin x$
- Example: Taylor series for $\cos x$ about $\frac{17\pi}{4}$
 - This series is useful despite the series for $\cos x$ converging for all x due to rate of convergence - Derivatives:

*
$$f(x) = \cos x \implies f\left(\frac{17\pi}{4}\right) = \frac{1}{\sqrt{2}}$$

* $f'(x) = -\sin x \implies f\left(\frac{17\pi}{4}\right) = -\frac{1}{\sqrt{2}}$
* $f''(x) = -\cos x \implies f\left(\frac{17\pi}{4}\right) = -\frac{1}{\sqrt{2}}$
* $f'''(x) = \sin x \implies f\left(\frac{17\pi}{4}\right) = \frac{1}{\sqrt{2}}$
* $f'''(x) = \cos x \implies f\left(\frac{17\pi}{4}\right) = \frac{1}{\sqrt{2}}$

* There are two negatives and two positives alternating so we need to use 2 sums

$$-\cos x = \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \left(x - \frac{17\pi}{4} \right) - \frac{1}{\sqrt{2}} \frac{\left(x - \frac{17\pi}{4} \right)^2}{2!} + \cdots$$
$$-\cos x = \sum_{n=0}^{\infty} \frac{1}{\sqrt{2}} (-1)^n \frac{\left(x - \frac{17\pi}{4} \right)^{2n}}{(2n)!} + \sum_{n=0}^{\infty} \frac{1}{\sqrt{2}} (-1)^{n+1} \frac{\left(x - \frac{17\pi}{4} \right)^{2n+1}}{(2n+1)!}$$

• Example: Prove $\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}x}{n}$ for $x \in (-1,1]$

– Derivatives:

*
$$f(x) = \ln(1+x)$$

* $f'(x) = \frac{1}{1+x}$
* $f''(x) = \frac{-1}{(1+x)^2}$
* $f'''(x) = \frac{2}{(1+x)^3}$
* $f^{(n)}(x) = \frac{(-1)^{n+1}(n-1)!}{(1+x)^n}$

- We can't bound this derivative in $-1 < x \le 1$ because as x tends to -1 the derivative shoots off to infinity, so we need to work with the integral form

$$\begin{aligned} -R_n(x) &= \frac{1}{n!} \int_0^x f^{(n+1)}(t)(x-t)^n \, \mathrm{d}t \\ &= \frac{1}{n!} \int_0^x (-1)^{n+1} \frac{n!}{(1+t)^{n+1}} (x-t)^n \, \mathrm{d}t \\ &= (-1)^n \int_0^x \frac{(x-t)^n}{(1+t)^{n+1}} \, \mathrm{d}t \\ - & \text{For } 0 \le x \le 1: \ |R_n(x)| = \int_0^x \frac{(x-t)^n}{(1+t)^{n+1}} \, \mathrm{d}t \le \int_0^x (x-t)^n \, \mathrm{d}t = \frac{x^{n+1}}{n+1} \xrightarrow{\to} 0 \text{ since } x < 1 \\ - & \text{For } -1 < x < 0: \ |R_n(x)| = \left| \int_0^x \frac{(x-t)^n}{(1+t)^{n+1}} \, \mathrm{d}t \right| \\ &= \int_x^0 \left(\frac{t-x}{1+t} \right)^n \frac{1}{1+t} \, \mathrm{d}t \\ * & \text{Apply MVTI: } \int_x^0 \left(\frac{t-x}{1+t} \right)^n \frac{1}{1+t} \, \mathrm{d}t = \left(\frac{z-x}{1+z} \right)^n \frac{1}{1+z} (-x), \text{ where } x < z < 0 \text{ and } -x \text{ is the interval width } b - a \\ * & \text{To show } \frac{z-x}{1+z} < 1: \qquad |x| < 1 \\ &\implies |x| - |z| < 1 - |z| \\ &\implies \frac{|x| - |z|}{1-|z|} < 1 \\ &\implies \frac{-x+z}{1+z} < 1 \\ &\implies \frac{z-x}{1+z} < 1 \\ &\implies \frac{z-x}{1+z} < 1 \\ &\implies \frac{z-x}{1+z} < 1 \\ * & \lim_{n \to \infty} \left(\frac{z-x}{1+z} \right)^n = 0 \implies R_n(x) = \left(\frac{z-x}{1+z} \right)^n \frac{1}{1+z} (-x) \xrightarrow{\to} 0 \end{aligned}$$