
Lecture 17, Feb 18, 2022
Representing Functions as Power Series

• Example: x

x − 3

– x

x − 3 = −x · 1
3 − x

= −x

3 · 1
1 − x

3
= −x

3

(
1 + x

3 +
(x

3

)2
+ · · ·

)
= −

∞∑
n=0

(x

3

)n+1

– Converges for |x| < 3
• Theorem: Term-by-Term Differentiation and Integration: For

∑
Cn(x − a)n with radius of convergence

R = R0 > 0 then f(x) =
∞∑

n=0
Cn(x − a)n is continuous and differentiable on (a − R0, a + R0), and:

– f ′(x) =
∞∑

n=1
nCn(x − a)n−1

* Note the sum now starts from n = 1, because there is a constant term that disappears

* Alternatively, d
dx

( ∞∑
n=0

Cn(x − a)n

)
=

∞∑
n=0

d
dx

(Cn(x − a)n)

–
�

f(x) dx = C +
∞∑

n=0

Cn

n + 1(x − a)n+1

* Alternatively,
� ( ∞∑

n=0
Cn(x − a)n

)
dx =

∞∑
n=0

�
(Cn(x − a)n) dx

– Both derived series have the same radius of convergence, but the behaviour at end points may
change

• This allows us to calculate some otherwise difficult integrals, e.g.
� 0.1

0

1
1 + x4 dx

• Example: 1
(1 + x)2

– Note d
dx

(
− 1

1 + x

)
= 1

(1 + x)2

– 1
(1 + x)2 = d

dx

(
− 1

1 + x

)
= d

dx

(
−

∞∑
n=0

(−x)n

)
=

∞∑
n=1

(−1)n+1nxn−1 =
∞∑

n=1
(−1)n(n + 1)xn

• Example: ln(1 − x)

– ln(1 − x) = −
� 1

1 − x
dx = −

� ∞∑
n=0

xn dx = C −
∞∑

n=0

xn+1

n + 1 = −
∞∑

n=0

xn

n

– Solve for the constant of integration: Set x = 0, ln(1 − 0) = 0 = C
• Example: tan−1 x

– d
dx

tan−1 x = 1
1 + x2

– tan−1 x =
� 1

1 + x2 dx =
∞∑

n=0

�
(−1)nx2n dx = C +

∞∑
n=0

(−1)n x2n+1

2n + 1 = C + x − x3

3 + x5

5 − · · ·

– Calculate constant of integration by x = 0: C = tan−1 0 = 0

– tan−1 x =
∞∑

n=0
(−1)n x2n+1

2n + 1
– Radius of convergence R = 1 follows from the original geometric series; we can test the boundaries

to see it also converges for x = ±1
– This leads to tan−1 = π

4 = 1 − 1
3 + 1

5 − 1
7 + · · · (Leibniz formula for π)
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Taylor and Maclaurin Series
• Let f(x) = C0 + C1(x − a) + C2(x − a)2 + · · · for |x − a| < R

– Notice that f(a) = C0
– f ′(x) = C1 + 2C2(x − a) + 3C3(x − a)2 + · · · =⇒ f ′(a) = C1
– f ′′(x) = 2C2 + 6C3(x − a) + 12C4(x − a)2 + · · · =⇒ f ′′(a) = 2C2
– Following this pattern we note that f (n)(a) = n!Cn

• Theorem: If f(x) has a power series representation about a of f(x) =
∞∑

n=0
Cn(x − a)n for |x − a| < R

then the coefficients are given by Cn = f (n)(a)
n!

– f(x) =
∞∑

n=0

1
n!f

(n)(a)(x − a)n = f(a) + f ′(a)(x − a) + 1
2!f

′′(a)(x − a)2 + 1
3!f

′′′(a)(x − a)3 + · · ·

– This is known as the Taylor series of f about a

– In the special case where a = 0 =⇒ f(x) = f(0) + f ′(0)x + 1
2!f

′′(0)x2 + · · · this is called a
Maclaurin series

• Definition: A function is analytic at a if it can be represented as a power series about a
– The function essentially needs to be infinitely differentiable at a

• Example: f(x) = ex about 0
– All derivatives at 0 are equal to 1

– ex =
∞∑

n=0

xn

n!

– To determine our ratio of convergence use the ratio test:
∣∣∣∣an+1

an

∣∣∣∣ =
∣∣∣∣ xn+1

(n + 1)! · n!
xn

∣∣∣∣ = x

n + 1 →
n→∞

0

so the series converges for all x
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