Lecture 15, Feb 14, 2022

Limit Comparison Test

e Limit Comparison Test: Given Zak, Zbk; ar, > 0,b; > 0, then

1. If lim - = ¢ > 0 then both series converge or diverge
n—oo n

2. If lim 2 = 0 then convergence of Z b,, implies convergence of Z an

n—oo n
3. If lim

n—o0 by,

e Case 1 proof:

= oo then divergence of Z b, implies divergence of Z an

Clim I — |% <eforn>N
n—oo by, by,
¢ ¢  a, 3c c 3c
— Choose e = = = - < 2 <= = =b, <a, < —=b, forn>N
oose & = 5 2<bn<2 50n < an < Soby forn >

3
- If Z b, converges then so doesc; Z by, so Z an converges by the comparison test
- If Z b, diverges then so does 3 SO Z an diverges by the comparison

+ Example: —
nd —

1
— Limit comparison test to —
n

3

. an .
- lim — = lim
n—o00 0O, n—oo ’/L3 —n

1
=1 so by LCT, the series converges since Z — Is convergent
n

Alternating Series

e Sometimes series contain both positive and negative terms
e An alternating series alternates between positive and negative terms
cosn

— Not all series with both positive and negative terms are alternating, e.g. —
n

o Alternating series usually have a (—1)" term to make the alternating signs
o Alternating Series Test: Let { ax } be a sequence of positive numbers; if ax1 < ap and klim ar =0,
— 00

o0
then Z:(—l)k_1 aj converges
k=1

— Since the terms alternate between positive and negative and are decreasing we’re always bouncing
around in a range that’s getting smaller
— Any partial sum must lie between the two previous sums
— Proof:
* First look at the even terms: Sy = a3 —as > 0,5y = Sy + (ag —aq) > 0,---,S2, =
Son—2 + (@2n—1 — a2pn) > Sopn—2
e By induction, { S2, } is a monotonically increasing sequence
e Also, So, = a1 — (ag —a3) — (ag — a5) — -+ - — (a2p—2 — a2p—1) — a2q; since all the terms
after ay are positive, Sa,, < ay for all n
e Since { S2;, } is monotonic and bounded by the monotonic sequence theorem it converges
e Let lim S5, =L
n—oo
* Now look at the odd terms: So,4+1 = Sap, + a2n41
e lim Sy, = lim Sy, + lim ag,i1
n—oo n—oo n—oo
o First limit is L as above, second limit is 0 since we require that the sequence goes to 0,
therefore lim Sy, + lim ag,41 =L
n—oo n—oo

* Since lim Sy, = lim Ss,11 = L, lim S,, = L so the series converges
n— oo n—oo n— oo

— If a, — 0 is not true, then the series always diverges, but the series being monotonically decreasing
is not a strict requirement for convergence



1)n+1

o0
o Example: Alternating harmonic series: E (7 converges because absolute value of terms decreases
n

n=1
and magnitude goes to 0

Alternating Series Error Bounds

o The properties of an alternating series give us that L will always be between S,, and Sy, +1: |[L—S,| < apnt1
e The error in a partial sum is less than the next term in the series

Absolute and Conditional Convergence

o Definition: If Z\aﬂ converges, then Z ay is absolutely convergent; if Z ay converges but not Z|ak|7
then Zak is conditionally convergent

o Theorem: If Z|ak| converges, then Z ay, also converges
— Proof: —|a,| < a, <lan| = 0 < ay + |an] < 2]ay|
* Let ap + |an| =b, = 0 <b, <2|ay|
* We know 2 Z\an\ converges, therefore Z by, converges by the comparison test since a,,+|a,| <
2|an|

* Rearranging, Z an = Z b, — Z|an|

* Because both Z b, and Z|an| is convergent, Z a, is convergent
e (_1)n+1
e Example: The alternating harmonic series Z

n=1

is conditionally convergent

(—1)k+1 B 1 1 " . . .
. Z = Z o1 Z % but for conditionally convergent series we have an co — 0o situation
— This means we must be careful when moving the terms around; depending on the rate that both

sums approach infinity we can get a different value out of it
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