Lecture 15, Feb 14, 2022

Limit Comparison Test

- Limit Comparison Test: Given $\sum a_k, \sum b_k; a_k > 0, b_k > 0$, then 1. If $\lim_{n \to \infty} \frac{a_n}{b_n} = c > 0$ then both series converge or diverge 2. If $\lim_{n \to \infty} \frac{a_n}{b_n} = 0$ then convergence of $\sum b_n$ implies convergence of $\sum a_n$ 3. If $\lim_{n \to \infty} \frac{a_n}{b_n} = \infty$ then divergence of $\sum b_n$ implies divergence of $\sum a_n$ class 1 proof: • Case 1 proof: $-\lim_{n \to \infty} \frac{a_n}{b_n} = c \implies \left| \frac{a_n}{b_n} - c \right| < \varepsilon \text{ for } n > N$ - Choose $\varepsilon = \frac{c}{2} \implies \frac{c}{2} < \frac{a_n}{b_n} < \frac{3c}{2} \implies \frac{c}{2}b_n \le a_n \le \frac{3c}{2}b_n$ for $n \ge N$ - If $\sum b_n$ converges then so does $\frac{3c}{2} \sum b_n$ so $\sum a_n$ converges by the comparison test - If $\sum b_n$ diverges then so does $\frac{c}{2}$ so $\sum a_n$ diverges by the comparison • Example: $\frac{1}{n^3 - n}$ – Limit comparison test to $\frac{1}{n^3}$
 - $-\lim_{n\to\infty} \frac{a_n}{b_n} = \lim_{n\to\infty} \frac{n^3}{n^3 n} = 1$ so by LCT, the series converges since $\sum \frac{1}{n^3}$ is convergent

Alternating Series

- Sometimes series contain both positive and negative terms
- An *alternating series* alternates between positive and negative terms
 - Not all series with both positive and negative terms are alternating, e.g. $\frac{\cos n}{n^2}$
- Alternating series usually have a $(-1)^n$ term to make the alternating signs
- Alternating Series Test: Let $\{a_k\}$ be a sequence of positive numbers; if $a_{k+1} < a_k$ and $\lim_{k \to \infty} a_k = 0$,

then $\sum_{k=1}^{\infty} (-1)^{k-1} a_k$ converges

- Since the terms alternate between positive and negative and are decreasing we're always bouncing around in a range that's getting smaller
- Any partial sum must lie between the two previous sums
- Proof:
 - * First look at the even terms: $S_2 = a_1 a_2 > 0, S_4 = S_2 + (a_3 a_4) > 0, \dots, S_{2n} =$ $S_{2n-2} + (a_{2n-1} - a_{2n}) > S_{2n-2}$

 - By induction, { S_{2n} } is a monotonically increasing sequence
 Also, S_{2n} = a₁ (a₂ a₃) (a₄ a₅) ··· (a_{2n-2} a_{2n-1}) a_{2n}; since all the terms after a_1 are positive, $S_{2n} < a_1$ for all n
 - Since $\{S_{2n}\}$ is monotonic and bounded by the monotonic sequence theorem it converges • Let $\lim_{n \to \infty} S_{2n} = L$ * Now look at the odd terms: $S_{2n+1} = S_{2n} + a_{2n+1}$

- lim _{n→∞} S_{2n+1} = lim _{n→∞} S_{2n} + lim _{n→∞} a_{2n+1}
 First limit is L as above, second limit is 0 since we require that the sequence goes to 0,

therefore $\lim_{n \to \infty} S_{2n} + \lim_{n \to \infty} a_{2n+1} = L$ * Since $\lim_{n \to \infty} S_{2n} = \lim_{n \to \infty} S_{2n+1} = L$, $\lim_{n \to \infty} S_n = L$ so the series converges - If $a_n \to 0$ is not true, then the series always diverges, but the series being monotonically decreasing is not a strict requirement for convergence

• Example: Alternating harmonic series: $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ converges because absolute value of terms decreases and magnitude goes to 0

Alternating Series Error Bounds

- The properties of an alternating series give us that L will always be between S_n and S_{n+1} : $|L-S_n| \leq a_{n+1}$
- The error in a partial sum is less than the next term in the series

Absolute and Conditional Convergence

- Definition: If $\sum |a_k|$ converges, then $\sum a_k$ is absolutely convergent; if $\sum a_k$ converges but not $\sum |a_k|$, then $\sum a_k$ is conditionally convergent
- Theorem: If $\sum |a_k|$ converges, then $\sum a_k$ also converges Proof: $-|a_n| \le a_n \le |a_n| \implies 0 \le a_n + |a_n| \le 2|a_n|$ * Let $a_n + |a_n| = b_n \implies 0 \le b_n \le 2|a_n|$ * We know $2\sum |a_n|$ converges, therefore $\sum b_n$ converges by the comparison test since $a_n + |a_n| \le 2|a_n|$

 - * Rearranging, $\sum a_n = \sum b_n \sum |a_n|$ * Because both $\sum b_n$ and $\sum |a_n|$ is convergent, $\sum a_n$ is convergent
- Example: The alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ is conditionally convergent
- $\sum \frac{(-1)^{k+1}}{k} = \sum \frac{1}{2k-1} \sum \frac{1}{2k}$, but for conditionally convergent series we have an $\infty \infty$ situation This means we must be careful when moving the terms around; depending on the rate that both sums approach infinity we can get a different value out of it