Lecture 13, Feb 8, 2022

Recursive Sequences

e How do we find the limit of a recursive sequence?
e First prove that it exists
e Example: a1 = 1,a, = /6 4+ an_1
— We can show that it is increasing and has an upper bound of 3 using induction, so by the monotonic
sequence theorem it converges
— Knowing that the limit exists we can treat lim a, = L as a number, and nh_}IIOIO an—1 = L also
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— Taking the limit of both sides a,, = \/6 + a,—1 = L = V6 + L, solving for L yields 3 and —2
but the latter can’t be a solution because all terms are positive

Series
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e Infinite sums can lead to finite answers; e.g. 3 + 1 + 3 +-..=1
e Define a partial sum as: S, = Z ak
k=0
o We can form a sequence of partial sums { S,, } = { ap,a0 + a1,a0 + a1 + ag, - }
— If this sequence does converge lim S,, = L then we define Z ar =L
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— Telescoping series
e Geometric series: Zx"
k=0
— Note 2V is usually written as 1 even if £ = 0
— Sum is given by 1 for |x| < 1 (diverges for |z| > 1)
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— Proof:
Sy =14+
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* Assume x # 1, then S, = —— = lim S, =
1—-2z n—00 1—=x
o Convergence requirement |z| > 1 comes from the limit of 2"
*Whenx=1,S,=1+1+---=n+ 1 which diverges
*When x = —1,5,=1—1+1—--- which is 1 for odd n and 0 for even n so it diverges
1 1 1 1
— Example: T=3 = 1+§—|—Z+---= 1_% =2
o Example: Repeating decimal 0.285714
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o Example: 1—22 for |z| < 2, convert to geometric series
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