Lecture 12, Feb 7, 2021

Limits of a Sequence

e It’s often easier to work with the ordinary continuous function than the sequence itself; but note not all
features of a function carries over to the sequence, e.g. discontinuities can make an unbounded function
produce a bounded sequence

e We're really only interested in lim a,, because it makes no sense to consider the limit at any finite
n—oo

value since we only get discrete points and no values around those points for a limit to make any sense
e We also can’t differentiate or integrate a sequence so often taking the limit at infinity is more or less
the only thing we can do
o Definition: lim apn=L < Ve>0,3k>0€Z>5n>k = |a,—L|<e¢

=1

e Example: Prove lim
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— Choose k = — then - <-—-=c¢
€ n+1 k
e Theorem: Limits of sequences are unique: lim a, = LA lim a, =M = L=M
n—oo n—oo

e Definition: If a sequence has a limit, then it is convergent, otherwise it is divergent
— Convergent sequences are always bounded (but bounded sequences aren’t always convergent,
e.g. ap, =cos(mn) ={—-1,1,—1,1,--- } bounded above by 1 and below by —1 but still divergent)
— Contrapositive: Unbounded sequences are always divergent
e Monotonic Sequence Theorem: A bounded non-decreasing sequence converges to its least upper bound;
a bounded non-increasing sequence converges to its greatest lower bound
— Include non-increasing and non-decreasing since a constant sequence is convergent
— Monotonic only required for large n; the sequence can bounce around before that
— Proven in Stewart (Chapter 11.1, Theorem 12, page 772)
o Sequence limit laws/theorems:
— Limits are unique
— Limit of sum/product/quotient to sum/product/quotient of limits
Limit of constant times thing is equal to constant times limit of thing
— Limit of reciprocal is equal to the reciprocal of the limit assuming the limit does not equal zero
— Pinching theorem/squeeze theorem: a,, < b, < ¢, for large n and lim a, = L = lim ¢, then

n—oo n—oo
lim b, =L
n—oo
. =) o1 .
* Example: lim compare to —— and —, since both go to 0 this sequence also goes to
n— oo n n n
Zero
o Theorem: Given lim ¢, = ¢, if f is continuous at ¢ then lim f(c,) = f(c)
n— oo T—00

1 1 1
— Example: a,, = sin (712—1—1> nlgn;o 1T 0 and sin is continuous at 0 so nl;ngo sin (712—1—1> =

1
sin <nILII;O 3 +1) =sin0=0

Important Infinite Sequence Limits

1. For z > 0, lim v =1
n—oo l
1 1 nxr .
o o7 =€ S lngw = flnx and lim — =0,s0 lim e
n—,oo n n—oo
o this relies on the exponentlal being continuous at 0

2. Jz| <1 = lim 2" =0
—

1
Inzn 260:1

< |z|™ since |z| < 1
o Need to show |z"| < € for all n > k



27| = |2 <& => |z <ew
lim en =1 > ||, therefore for sufficiently large k we will have |z| < e*%

— From 1,
n—oo
— Therefore |2"| < ¢ for all n > k

1
3. lim — =0 for positive «
n—oo N, o
1 1
ne n
o Take odd positive integer p such that — < a (e.g. @« = 0.01, p can be 101)
p
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Since z7 = ¢/x is continuous when p is an odd positive integer, lim (

n—oo N

0» =0
By the squeeze theorem the limit is 0

1
lim — =0 for z € R (i.e. factorials grow faster than exponentials) and lim — =0 (i.e. factorials

4. n—oo Nl
grow slower than n'™)
1
lim — =0
1
£ =0

5.
n—oo N

o Use I’'Hopital’s rule to get lim
x

e The denominator can be to any power

6. lim nw =1
n—oo 1
e Innm = —Ilnn = lim n7 =0
r]’Ll n— o0
o lim ™" =0 =1
n— oo n
7. lim (1+E — et
n—o00 n
e For z = 0 this is satisfied trivially
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e Therefore lim In
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