Lecture 12, Feb 7, 2021

Limits of a Sequence

- It's often easier to work with the ordinary continuous function than the sequence itself; but note not all features of a function carries over to the sequence, e.g. discontinuities can make an unbounded function produce a bounded sequence
- We're really only interested in $\lim a_n$, because it makes no sense to consider the limit at any finite value since we only get discrete points and no values around those points for a limit to make any sense
- We also can't differentiate or integrate a sequence so often taking the limit at infinity is more or less the only thing we can do
- Definition: $\lim_{n \to \infty} a_n = L \iff \forall \varepsilon > 0, \exists k > 0 \in \mathbb{Z} \ni n \ge k \implies |a_n L| < \varepsilon$
- Example: Prove $\lim_{n \to \infty} \frac{n}{n+1} = 1$ Example: Prove min n→∞ n+1 = 1

 - | n/(n+1) - 1| = | 1/(n+1) | < ε ⇒ |n+1| > 1/ε
 - Choose k = 1/ε then | n/(n+1) | < | 1/n | < 1/ε = ε

 Theorem: Limits of sequences are unique: lim a_n = L ∧ lim a_n = M ⇒ L = M
 Definition: If a sequence has a limit, then it is convergent, otherwise it is divergent
- - Convergent sequences are always bounded (but bounded sequences aren't always convergent, e.g. $a_n = \cos(\pi n) = \{-1, 1, -1, 1, \dots\}$ bounded above by 1 and below by -1 but still divergent)
 - Contrapositive: Unbounded sequences are always divergent
- Monotonic Sequence Theorem: A bounded non-decreasing sequence converges to its least upper bound; a bounded non-increasing sequence converges to its greatest lower bound
 - Include non-increasing and non-decreasing since a constant sequence is convergent
 - Monotonic only required for large n; the sequence can bounce around before that
 - Proven in Stewart (Chapter 11.1, Theorem 12, page 772)
- Sequence limit laws/theorems:
 - Limits are unique
 - Limit of sum/product/quotient to sum/product/quotient of limits
 - Limit of constant times thing is equal to constant times limit of thing
 - Limit of reciprocal is equal to the reciprocal of the limit assuming the limit does not equal zero
 - Pinching theorem/squeeze theorem: $a_n \leq b_n \leq c_n$ for large n and $\lim_{n \to \infty} a_n = L = \lim_{n \to \infty} c_n$ then $\lim_{n \to \infty} b_n = L$

* Example: $\lim_{n \to \infty} \frac{\sin\left(\frac{n\pi}{6}\right)}{n}$ compare to $-\frac{1}{n}$ and $\frac{1}{n}$, since both go to 0 this sequence also goes to

• Theorem: Given $\lim_{n \to \infty} c_n = c$, if f is continuous at c then $\lim_{n \to \infty} f(c_n) = f(c)$

- Example:
$$a_n = \sin\left(\frac{1}{n^2+1}\right)$$
: $\lim_{n \to \infty} \frac{1}{n^2+1} = 0$ and sin is continuous at 0 so $\lim_{n \to \infty} \sin\left(\frac{1}{n^2+1}\right) = \sin\left(\lim_{n \to \infty} \frac{1}{n^2+1}\right) = \sin 0 = 0$

Important Infinite Sequence Limits

- 1. For x > 0, $\lim_{n \to \infty} x^{\frac{1}{n}} = 1$ $x^{\frac{1}{n}} = e^{\ln x^{\frac{1}{n}}} \to \ln x^{\frac{1}{n}} = \frac{1}{n} \ln x$ and $\lim_{n \to \infty} \frac{\ln x}{n} = 0$, so $\lim_{n \to \infty} e^{\ln x^{\frac{1}{n}}} = e^{0} = 1$ this relies on the exponential being continuous at 0
- 2. $|x| < 1 \implies \lim_{n \to \infty} x^n = 0$ $|x|^{n+1} < |x|^n$ since |x| < 1

 - Need to show $|x^n| < \varepsilon$ for all n > k

- $\begin{array}{l} |x^{n}| = |x|^{n} < \varepsilon \implies |x| < \varepsilon^{\frac{1}{n}} \\ \text{ From 1, } \lim_{n \to \infty} \varepsilon^{\frac{1}{n}} = 1 > |x|, \text{ therefore for sufficiently large } k \text{ we will have } |x| < \varepsilon^{\frac{1}{k}} \\ \text{ Therefore } |x^{n}| < \varepsilon \text{ for all } n > k \end{array}$ $3. \lim_{n \to \infty} \frac{1}{n^{\alpha}} = 0 \text{ for positive } \alpha$ • $0 < \frac{1}{n^{\alpha}} = \left(\frac{1}{n}\right)^{\alpha}$ • Take odd positive integer p such that $\frac{1}{p} < \alpha$ (e.g. $\alpha = 0.01, \, p$ can be 101) • $0 < \left(\frac{1}{n}\right)^{\alpha} < \left(\frac{1}{n}\right)^{\frac{1}{p}}$ • Since $x^{\frac{1}{p}} = \sqrt[p]{x}$ is continuous when p is an odd positive integer, $\lim_{n \to \infty} \left(\frac{1}{n}\right)^{\frac{1}{p}} = \left(\lim_{n \to \infty} \frac{1}{n}\right)^{\frac{1}{p}} =$ $0^{\frac{1}{p}} = 0$ • By the squeeze theorem the limit is 0 4. $\lim_{n \to \infty} \frac{x^n}{n!} = 0$ for $x \in \mathbb{R}$ (i.e. factorials grow faster than exponentials) and $\lim_{n \to \infty} \frac{n!}{n^n} = 0$ (i.e. factorials grow slower than n^n) 5. $\lim_{n \to \infty} \frac{\ln n}{n} = 0$ Use l'Hopital's rule to get lim ¹/_{x→∞} ¹/₁ = 0
 The denominator can be to any power
 lim n^{1/n} = 1 • $\ln n^{\frac{1}{n}} = \frac{1}{n} \ln n \implies \lim_{n \to \infty} n^{\frac{1}{n}} = 0$ • $\lim_{n \to \infty} e^{\ln n^{\frac{1}{n}}} = e^0 = 1$ 7. $\lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n = e^x$ • For x = 0 this is satisfied trivially • $\ln\left(1+\frac{x}{n}\right)^n = n\ln\left(1+\frac{x}{n}\right) = \frac{x\ln\left(1+\frac{x}{n}\right)}{\frac{x}{n}} = x\left(\frac{\ln\left(1+\frac{x}{n}\right) - \ln 1}{\frac{x}{n}}\right)$ • $\lim_{n \to \infty} \frac{\ln\left(1 + \frac{x}{n}\right) - \ln 1}{\frac{x}{n}} = \lim_{h \to 0} \frac{\ln(1+h) - \ln 1}{h} = 1$
 - Therefore $\lim_{x \to \infty} \ln\left(1 + \frac{x}{n}\right)^n = x \implies \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n = e^x$