Lecture 11, Feb 4, 2022

Areas in Polar Coordinates

o Let r = p(f) and a < 6 < B; to find the area we can consider small slides that are sectors of a circle
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— Consider a small Af; we can approximate the area by a circular sector: AA = 7a 5 3
™
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— Therefore area is given by A = % / [p(6))* d6

o Example: r =1 — cosf (a cardioid oriented along the x axis, to the left of the y axis)
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o For an area that lies between two polar curves we simply have A = 5 / [p? — p3]do

« Example: 72 = 4cos(26) (Lemniscate oriented along the x axis) and 7 = 1

T
— Lemniscate only exists for 1 <r< 1 due to the root

~ Find intersections: 4 cos(20) = 1> = 6 = £0.659rad or 7 4 0.659rad
— Use symmetry

- A= /0 ” (4cos(20) — 1) db

—0.659

Arc Lengths in Polar Coordinates

x =1(0)cosf
e Parameterize the curve with 6 and then use the parametric formula: { (9)
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Sequences

e A sequence is just a special function where the domain is limited to usually the positive integers
(sometimes zero is included, and rarely negative numbers)
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o Example: f(z) = — is a function, f(n) =a, = — =< 1, 303 } is a sequence
x n

— Curly brackets usually denote a sequence
e A sequence can be bounded above, below, or not at all

1
- eg. { -~ } is bounded above by 1, below by 0



e Sequences are collections of numbers; non-numbers such as infinity can’t be part of a sequence
o Similar to function definitions, { a, } is:

— Increasing iff a,, < ap41

— Non-decreasing iff a,, < an41

— Decreasing iff a,, > a1

— Non-increasing iff a,, > a,41

— A sequence satisfying any of these is called a monotonic sequence

a . . . .
e Example: a, = 2" — it o5 1 — Gn+1 > an 50 the sequence is monotonically increasing

Gnp
— To prove that this sequence is unbounded we follow a process similar to a limit at infinity
In M
— Find k such that ay > M for any M: 28 > M — k>

In2
— Since we’ve already shown that the sequence is increasing, ax > M = a,, > M if m > k
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