Lecture 1, Prerecorded

Hyperbolic Trig Functions

- Hyperbolic sine: $\sinh x = \frac{e^x e^{-x}}{2}$, hyperbolic cosine: $\cosh x = \frac{e^x + e^{-x}}{2}$ $-\frac{d}{dx} \sinh x = \cosh x$ and $\frac{d}{dx} \cosh x = \sinh x$ Note there is no longer a negative sign!
- sinh is an odd function and has a point of inflection at the origin; for large positive it behaves like $\frac{1}{2}e^x$,

large negative $-\frac{1}{2}e^{-x}$

- Basically two exponentials stitched together
- Note it does cross the origin $(\sinh 0 = 0)$

• cosh is an even function and always concave up; for large positive $\frac{1}{2}e^x$, large negative $\frac{1}{2}e^{-x}$

- Does not cross the origin; $\cosh 0 = 1$
- Pythagorean identity analogue: $\cosh^2 x \sinh^2 x = 1$
 - This means we can define the functions using a hyperbola
 - Notice a circle is $x^2 + y^2 = 1$ where points are $(\cos t, \sin t)$ and the area of the circular section is $\frac{1}{2}t$
 - Likewise a hyperbola is $x^2 y^2 = 1$ where points are $(\cosh t, \sinh t)$ and the area of the hyperbolic sector is also $\frac{1}{2}t$
- Best known application is the shape of a catenary $y = a \cosh\left(\frac{x}{a}\right) + C$
- Define $\tanh = \frac{\sinh x}{\cosh x} = \frac{e^x e^{-x}}{e^x + e^{-x}}$ Other hyperbolic functions follow

- Hyperbolic derivatives are extremely similar to regular trig derivatives; e.g. $\frac{d}{dx} \tanh x = \operatorname{sech}^2 x$

• Hyperbolic trig functions are *not* periodic

• We can find inverses:

$$x = \sinh y = \frac{e^{y} - e^{-y}}{2}$$

$$\implies 2x = e^{y} - e^{-y}$$

$$\implies 0 = e^{y} - e^{-y} - 2x$$

$$\implies 0 = e^{2y} - 2xe^{y} - 1$$

$$\implies e^{y} = \frac{2x \pm \sqrt{4x^{2} + 4}}{2}$$

$$\implies e^{y} = x + \sqrt{x^{2} + 1}$$

$$\implies y = \ln\left(x + \sqrt{x^{2} + 1}\right)$$

$$\implies \sinh^{-1} x = \ln\left(x + \sqrt{x^{2} + 1}\right)$$

$$\implies \sinh^{-1} x = \ln\left(x + \sqrt{x^{2} + 1}\right)$$

- $\mathrm{d}x$
- $\sqrt{x^2+1}$ \longrightarrow $\int \sqrt{1+x^2}$ • Important identities and differences:
 - sinh is odd, cosh is even
 - Pythagorean identity now uses minus; so does $1 \tanh^2 x = \operatorname{sech}^2 x$
 - $-\cosh(x+y)$ is two terms added instead of difference of two terms
 - $-\frac{\mathrm{d}}{\mathrm{d}x}\cosh x = \sinh x$, without the minus sign
 - $-\frac{\mathrm{d}}{\mathrm{d}x}\operatorname{sech} x = -\operatorname{sech} x \tanh x \text{ (as opposed to the normal } \frac{\mathrm{d}}{\mathrm{d}x}\operatorname{sec} x = \operatorname{sec} x \tan x$ - Inverses: $\sinh^{-1} x = \ln\left(x + \sqrt{x^2 + 1}\right), \cosh^{-1} x = \ln\left(x + \sqrt{x^2 - 1}\right), \tanh^{-1} x = \frac{1}{2}\ln\left(\frac{1 + x}{1 - x}\right)$

- Derivatives of inverses:

*
$$\frac{d}{dx} \sinh^{-1} x = \frac{1}{\sqrt{x^2 + 1}}$$

* $\frac{d}{dx} \cosh^{-1} x = \frac{1}{\sqrt{x^2 - 1}}$
* $\frac{d}{dx} \tanh^{-1} x = \frac{1}{1 - x^2}$
* $\frac{d}{dx} \operatorname{csch}^{-1} x = -\frac{1}{|x|\sqrt{x^2 + 1}}$
* $\frac{d}{dx} \operatorname{sech}^{-1} x = -\frac{1}{x\sqrt{1 - x^2}}$
* $\frac{d}{dx} \operatorname{coth}^{-1} x = \frac{1}{1 - x^2}$

 $dx = 1 - x^2$ * Note the derivatives of tanh⁻¹ and coth⁻¹ have identical expressions, but the domain of each is different; tanh⁻¹ x is defined for |x| > 1 and coth⁻¹ x for |x| > 1