Lecture 38, Apr 11, 2022

Complex Power

- So far all of the types of power are real numbers; complex power is the only type of power that is complex
- The complex power for a sinusoidal AC circuit is defined as $S = \frac{1}{2}VI^* = V_{rms}I^*_{rms}$ where $V = V_m \angle \theta_v, I = I_m \angle \theta_i$
 - Complex power also has units of volt-amps
- We can also write complex power as $S = \frac{1}{2} (V_m \angle \theta_v) (I_m \angle \theta_i) = \frac{1}{2} V_m I_m \angle (\theta_v \theta_i)$
 - Recall the apparent power $S = \frac{1}{2}V_m I_m$, so the complex power has an amplitude equal to the apparent power
- Using Euler's formula, in rectangular form $S = V_{rms}I_{rms}\cos(\theta_v \theta_i) + jV_{rms}I_{rms}\sin(\theta_v \theta_i)$
- Complex power is related to average/active and reactive power by $\boldsymbol{S}=P_{ave}+jQ$
- The power factor is the cosine of the angle of the complex power
- Consider an impedance $\mathbf{Z} = R + jX$, complex power is $\mathbf{S} = \mathbf{V}_{rms} \mathbf{I}_{rms}^*$

$$= \mathbf{Z} \mathbf{I}_{rms} \mathbf{I}^*_{rms}$$

= $(R + jX) |\mathbf{I}_{rms}|^2$
= $RI^2_{rms} + jXI^2_{rms}$
= $P_{ave} + Q$

- S, P and Q form a triangle in the complex plane
- Conservation of power: the algebraic sum of all the complex powers in a circuit is zero, $\sum_{k=1}^{n} S_k = 0$

where n is the number of circuit elements

- Since complex power has a real and imaginary component, conservation of power holds for both average and reactive power separately