Lecture 31, Mar 30, 2022

Impedance of RL, RC, LC, and RLC circuits

$$\sim ^{K} \sim ^{L} \sim ^{MMM}$$

$$- \mathbf{Z}_{RL} = \mathbf{Z}_R + \mathbf{Z}_L = R + j\omega L$$

- * The real part of the impedance for an RL circuit is the resistance of the resistor; the imaginary part is ωL , frequency times the inductance of the inductor
- * Combining R and L gives both a resistance and a reactance
- * The angle depends on both R and L; if $\mathbf{Z}_R \gg \mathbf{Z}_L$ then $\angle \mathbf{Z}_{RL} \rightarrow 0$; if $\mathbf{Z}_R \ll \mathbf{Z}_L$ then $\angle \mathbf{Z}_{RL} \rightarrow 90^{\circ}$
- * The phase difference is $0 < \theta_v \theta_i < 90^\circ$; greater resistance leads to less phase difference, while greater inductance leads to more phase difference
- * Voltage leads current by some amount between 0° and 90°
- For an RC circuit: C

$$\begin{array}{c} R \\ \hline \\ - \mathcal{Z}_{BC} = \mathcal{Z}_{B} + \mathcal{Z}_{C} = R \end{array}$$

- $Z_{RC} = Z_R + Z_C = R \frac{j}{\omega C}$ * This time the angle is between 0° and 90° since the imaginary part (reactance) is negative * $Z_R \gg Z_C \implies \angle Z_{RC} \rightarrow 0$ and $Z_R \ll Z_C \implies \angle Z_{RC} \rightarrow -90^\circ$
- * Voltage lags current by some amount between 0° and 90° (current leads voltage)
- For an LC circuit:

$$\begin{array}{c} L & C \\ \hline & & \\ \hline & & \\ - & \mathbf{Z}_{LC} = \mathbf{Z}_L + \mathbf{Z}_C = j \left(\omega L - \frac{1}{\omega C} \right) \end{array}$$

- * The impedance of an LC circuit is entirely imaginary (no resistance)
- * The imaginary part can be positive or negative, depending on the relative values of the inductance and capacitance
 - $\omega L > \frac{1}{\omega C} \implies \text{Im } \mathbf{Z}_{LC} > 0$, and voltage leads current by 90°

$$\omega L < \frac{1}{\omega C} \implies \text{Im } \mathbf{Z}_{LC} < 0$$
, and voltage lags current by 90°

• For an RLC circuit:

$$\begin{array}{c} L & C & R \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ - & \mathbf{Z}_{RLC} = \mathbf{Z}_R + \mathbf{Z}_C + \mathbf{Z}_L = R + j \left(\omega L - \frac{1}{\omega C} \right) \end{array}$$

- * The real part is positive, the imaginary part can be positive or negative depending on the relative values of inductance and capacitance
- $^*\,$ The angle is between -90° and $90^\circ;$ sign follows the same pattern as for an LC circuit

Sinusoidal Steady State Analysis

- Since all the laws and techniques (KVL, KCL, etc) still hold in the phasor domain, we can analyze AC circuits in the same way
- Convert the circuit into phasor domain (resistances, inductances, and capacitances to impedances), and use $\mathbf{Z} = \frac{\mathbf{V}}{\mathbf{I}}$ in the same way that $R = \frac{v}{i}$ is used in DC circuits
 - Convert the phasors back to time domain afterwards if desired
- The only difference is that complex phasors are used instead of real numbers

• Example:

