Lecture 28, Mar 23, 2022

Sinusoids and Phasors

- Many AC sources generate sinusoidal voltages and currents (e.g. power generators, the power grid)
- Generally $v(t) = V_m \sin(\omega t + \alpha)$ for a sinusoidal voltage
 - $-V_m$ is the amplitude of the sinusoidal voltage in volts
 - $-\omega$ is the angular frequency, in rad/s

 - t is time in seconds, so that ωt has units of rad * The period is related by $T_0 = \frac{2\pi}{\omega}$, or $\omega = \frac{2\pi}{T_0}$
 - * T_0 is the fundamental period, the smallest possible period
 - $-\alpha$ is the phase/phase angle/initial phase/etc in radians
 - * Note sometimes α may be given in degrees, in which case you need to multiply by $\frac{\pi}{180^{\circ}}$ to convert to radians
 - * A signal with larger α leads another signal, while a smaller α lags another signal
 - * Phase leads or lags are commonly expressed with an angle in the $-\pi$ to π range (e.g. "leading by 270° " is unconventional)
 - We also define *frequency* (as opposed to angular frequency) as $f = \frac{1}{T_0} = \frac{\omega}{2\pi}$ with units of s⁻¹ = Hz
- Note the phase difference between two sinusoidal signals is $\alpha_1 \alpha_2$ in radians, but to convert this to time we need to divide by ω
 - If two ω are different for two signals, the phase difference is undefined
 - Cosine has an additional phase offset of $+\frac{\pi}{2}$ when compared to sine
 - Adding a phase offset of 180° negates the sign
 - $-\sin(\alpha \pm 180^\circ) = -\sin(\alpha)$
 - $-\cos(\alpha \pm 180^\circ) = -\cos(\alpha)$
 - $-\sin(\alpha \pm 90^\circ) = \pm\cos(\alpha)$
 - $-\cos(\alpha \pm 90^\circ) = \mp\sin(\alpha)$
- Often sinusoidal signals are defined with a cosine function as $v(t) = V_m \cos(\omega t + \alpha)$
- Using Euler's formula, $V_m e^{j(\omega t + \alpha)} = V_m \cos(\omega t + \alpha) + jV_m \sin(\omega t + \alpha)$ (where $j^2 = -1$)

$$-v(t) = \operatorname{Re}\left(V_m e^{j(\omega t + \alpha)}\right) = \operatorname{Re}\left(V_m e^{j\alpha} e^{j\omega t}\right)$$

- For a given ω , v(t) is uniquely determined by a complex number $V_m e^{j\alpha}$ (magnitude is V_m , argument is α)
 - * This complex number is the *phasor* for the voltage, indicated by $\mathbf{V} = V_m e^{j\alpha}$
- Similarly for currents, the phasor for $i(t) = I_m \cos(\omega t + \alpha)$ is $I = I_m e^{j\alpha}$