Lecture 27, Mar 21, 2022

Step Response of an RL Circuit

• Consider an RL circuit with an voltage source that turns on at t = 0, with the inductor initially charged with a current of I_0 :

$$V_{s} \stackrel{t_{L}}{-} \underbrace{V_{s} + I_{L}}_{-} \underbrace{V_{s} + Ri_{L}(t) + L\frac{di_{L}}{dt} = 0}_{\Rightarrow i_{L}(t) - \frac{V_{s}}{R} = -\frac{L}{R}\frac{di_{L}}{dt}}_{\Rightarrow \int \frac{1}{i_{L}(t) - \frac{V_{s}}{R}} di_{L} = \int -\frac{1}{L/R} dt$$
$$\Rightarrow \int \frac{1}{i_{L}(t) - \frac{V_{s}}{R}} di_{L} = \int -\frac{1}{L/R} dt$$
$$\Rightarrow \ln \left(i_{L}(t) - \frac{V_{s}}{R}\right) + K = -\frac{t}{L/R}$$
$$\Rightarrow i_{L}(t) = \frac{V_{s}}{R} + Ae^{-\frac{t}{L/R}}$$
* Using the initial condition of $i_{L}(0) = I_{0} \Rightarrow A$

* Using the initial condition of
$$i_L(0) = I_0 \implies A = I_0 - \frac{V_s}{R}$$

* $i_L(t) = \frac{V_s}{R} + \left(I_0 - \frac{V_s}{R}\right)e^{-\frac{t}{L/R}} = \frac{V_s}{R} + \left(I_0 - \frac{V_s}{R}\right)e^{-\frac{t}{\tau}}$
* $v_L(t) = L\frac{\mathrm{d}i_L}{\mathrm{d}t} = (V_s - RI_0)e^{-\frac{t}{L/R}}$

• The current starts at I_0 and exponentially decays towards $\frac{V_s}{R}$, the final value for current (at which point the inductor is a short circuit)

– At t = 0 this is accompanied by a jump in the voltage

- The time constant τ is given by $\frac{L}{R}$
- As with the RC case, $i_L(t) = i_L(\infty) + (i_L(0) i_L(\infty))e^{-\frac{t}{\tau}}$ $-i_L(\infty) = \frac{V_s}{R}$ because the inductor becomes a short circuit $-i_L(0) = I_0$