Lecture 26, Mar 18, 2022

Source-Free RL Circuits

• Consider a source-free RL circuit:

– Initial condition: $i_L(0) = I_0$

* Since the current of an inductor cannot change abruptly, we find the current

* KVL:
$$v_L - v_R = 0 \implies L \frac{\mathrm{d} i_L}{\mathrm{d} t} + iR = 0$$

* Solving the differential equation: $\int \frac{1}{i_L} di_L = -\int \frac{1}{\frac{L}{R}} dt \implies \ln(i_L(t)) + K = -\frac{t}{\frac{L}{R}}$

- * Solution is $i_L(t) = A e^{-\frac{t}{L/R}}$
- * Using the initial condition gives $A = I_0$, giving $i_L(t) = I_0 e^{-\frac{t}{L/R}} = I_0 e^{-\frac{t}{\tau}}$ where $\tau = \frac{L}{R}$ is the time constant for an RL circuit
 - Larger time constant means slower decay
 - Similar to τ for a capacitor, the time constant can be found by the intersection of the tangent line at t = 0 with the time axis

* Voltage:
$$v_L = L \frac{\mathrm{d}i_L}{\mathrm{d}t} = -RI_0 e^{-\frac{t}{\tau}}$$