Lecture 24, Mar 14, 2022

Source-Free RC Circuits

- In a first-order transient circuit, the relationship between current and voltage can be described by a first-order differential equation
 - These are either RC or RL circuits (resistors and capacitors/inductors)
 - They can have sources or no sources
- Consider a source-free RC circuit:

$$C \xrightarrow{i_c(t)} \mathbf{x} \xrightarrow{t = 0} R$$

- Suppose before time 0 the capacitor is energized to $v_c(0^-) = V_0$, and then at time 0, the switch is closed and the energizing circuit is removed
 - * KVL gives: $v_c(t) + Ri_c(t) = 0 \implies v_c(t) + RC\frac{\mathrm{d}v_c}{\mathrm{d}t} = 0 \implies v_c = -RC\frac{\mathrm{d}v_c}{\mathrm{d}t}$ * This is a separable equation: $\int \frac{1}{v_c} \mathrm{d}v_c = \int -\frac{1}{RC} \mathrm{d}t \implies \ln(v_c) + K = -\frac{t}{RC}$
 - * Rearranging: $v_c(t) = Ae^{-\frac{t}{RC}}$
 - * Solving for initial conditions with $v_c(0) = V_0$, we obtain $v_c(t) = V_0 e^{-\frac{t}{RC}}$
 - Note we can do this because a capacitor's voltage cannot change abruptly, so $v_c(0^+) =$ $v_c(0^-) = V_0$

 - We could not have started with current because we don't know the current at 0⁺ * The current is then $i_c(t) = C \frac{\mathrm{d}v_c}{\mathrm{d}t} = -\frac{V_0 C}{RC} e^{-\frac{t}{RC}} = -\frac{V_0}{R} e^{-\frac{t}{RC}}$ or $\frac{V_0}{R} e^{-\frac{t}{RC}}$ not following PSC
 - Note there is a discontinuity at time 0 as the current starts at 0 and jumps to $\frac{V_0}{D}$, and then decays to 0
- In a source-free RC circuit the voltage across the capacitor follows an exponential decay to 0
 - Large RC causes slower decay; small RC causes faster decay
 - Let $\tau = RC$ be the *time constant* of the RC circuit; τ characterizes how fast the voltage decays
 - $-\tau$ can be found by finding the tangent at t=0, and finding where the tangent intersects the horizontal axis
 - * $\frac{\mathrm{d}v_c}{\mathrm{d}t}(0) = -\frac{V_0}{RC}$ so tangent is $y = V_0 \frac{V_0 t}{RC}$; therefore when $t = \tau = RC$ the tangent intersects the time axis
 - $-\tau$ has the same unit as time (seconds), so that the argument of the exponential is unitless