Lecture 21, Mar 7, 2022

Operational Amplifiers (Op-Amps)

- Op amps have 3 terminals that are relevant for this course: the positive (non-inverting) terminal, the negative (inverting) terminal, and then output terminal
 - Inverting input has voltage v_1 and current i_2 , non-inverting input has voltage v_2 and current i_2 ; output has voltage v_{out} and current i_{out} (voltages measured wrt ground)
 - The symbol is

- If there is a path between the inverting input and output (either a short or any resistance), then the op amp as a *negative feedback connection*
 - Under a negative feedback connection, $v_1 = v_2$, i.e. it forces 2 voltages to be the same (under ideal conditions), and $i_1 = i_2 = 0$ (infinite input impedance)
- In this course we only discuss ideal op amps
- Example circuit: •

- The path from the output to the inverting input forces $v_2 = v_1$, therefore the current through R_{in} is $\frac{V_{in}}{R_{in}}$ * No current goes into the op amp so current through R_f is also I_{in} V_{in}

 - * Since $v_2 = 0$ the current through R_f is also $-\frac{V_{out}}{D}$
 - * Since $v_2 = 0$ the current through R_f is also $-\frac{Sur}{R_f}$ * Equating these currents: $\frac{V_{in}}{R_{in}} = I_{in} = \frac{V_{out}}{R_f} \Longrightarrow \frac{V_{out}}{V_{in}} = -\frac{R_f}{R_{in}}$
 - * This circuit is called an *inverting amplifier* since it switches the polarity, and amplifies it by a R_{f} gain of – R_{in}
- If the input voltage now goes into the noninverting input, the output voltage is no longer inverted, so this is now a *noninverting amplifier*:

• In general, to solve an op amp circuit when there is a connection from output to inverting input, first try to find either v_1 or v_2 , and then use the relationship $v_1 = v_2$ to find the voltage at the other terminal, and then solve the rest of the circuit