Lecture 11, Feb 4, 2022

Current Division

• Similar rule can be found for current in a parallel circuit:

$$\begin{array}{c}
\stackrel{i_{tot}}{\leftarrow} & i_{1} \\
\stackrel{i_{2}}{\leftarrow} & i_{1} \\
\stackrel{i_{2}}{\leftarrow} & i_{2} \\
\stackrel{i_{2}}{\leftarrow} & i_{i} \\
\stackrel{i_{2}}{\leftarrow}$$

- The current division principle is the dual of the voltage division principle; note the current division ratio uses the resistances of the **other** branches $\left(\frac{R_2}{R_1 + R_2} \text{ for current}, \frac{R_1}{R_1 + R_2} \text{ for voltage}\right)$ • As with voltage division, the signs only work if the direction of i_1 matches the direction of i_{tot} ; if the

- As with voltage division, the signs only work in the uncertain of v₁ matrix directions don't match, we need an additional negative sign
 We can write this in terms of the conductance as i₁ = G₁/G₁ + G₂ i_{tot}, similar to the voltage law
 For multiple resistors in series, we can either use the conductances, or collapse the other resistors down to a single resistor; for 3 resistors it becomes i₁ = R₂R₃/R₁R₂ + R₂R₃ + R₁R₃ i_{tot} and so on
- Can also be written as $i_1 = \frac{\frac{1}{R_1}}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_2}} i_{tot}$