
Lectures 1/2, Jan 14/17, 2022
Electric Variables

• An electric circuit is an interconnection of conductors, nonconductors and semiconductors
• The flow of electricity always involves the movement of charge
• Fundamental electric variables:

1. Electric current
– If we take a cross section of a conductor with moving charges, we get charge q(t) as a function

of time
– Define current as the rate of change charge with respect to time, i ≡ dq

dt
with units of C/s = A

(Coulombs per second, or Amperes)
– Current also has a direction (i.e. the direction of charge flow); the convention is the direction

of movement of the positive charge (even though negative charges is what’s actually moving
physically)

– Direction shown with arrows
2. Voltage

– Movement of charge is associated with energy
– Define voltage between two points as the energy required to move 1 Coulomb of charge between

two points in a circuit
– v ≡ dw

dq
where w is energy, q, is charge; units of J/C = V (Joules per Coulomb, or Volts)

– Voltage also has a polarity (positive or negative); the positive side is where the movement
starts, and the negative side is where the movement ends

* When we say “the voltage between point A and point B”, point A is the positive side and
point B is the negative side

– Polarity shown with positive and negative signs
3. Power

– Rate of absorbing or delivering energy with respect to time
– dw

dt
= dw

dq

dq

dt
=⇒ P ≡ dw

dt
= vi with units of J/s = W (Joules per second or Watts)

– To differentiate whether power is consumed or generated, we need another sign convention
– Passive sign convention (PSC): for a pair of v and i, PSC holds if current enters the positive

side of the voltage polarity first
* If PSC holds, then P = +vi; P > 0 =⇒ P is absorbed; P < 0 =⇒ P is delivered
* Otherwise, P = −vi; same holds for the meaning of sign of P

Lecture 3, Jan 19, 2022
Power Conservation

• For any circuit,
∑

Pk = 0 (power conservation law)
– Note the signs are very important here

Circuit Elements – Independent Sources
1. Independent voltage sources: voltage sources that provide a fixed voltage no matter what current is

flowing through it
• The voltage could be fixed or a time-variant function, e.g. vs(t) = 5 cos(100t + 2)V
• Generic notation:

−+

• Fixed voltages:
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• Sinusoidal voltage source:

• These are just models; they don’t actually exist because in reality current always impact the
voltage a little bit

• Which way the current flows depends on the circuit, so whether the voltage source produces or
consumes power depends on the circuits

2. Independent current sources: current sources that provide a fixed current no matter the voltage across
it

• Current could be fixed or time-variant
• Generic notation:

• Polarity depends on the rest of the circuit and so does whether it generates or consumes power

Lecture 4, Jan 24, 2022
Circuit Elements – Dependent Sources

• Linear dependent sources:
1. Voltage-dependent voltage source (controlled voltage source): voltage provided by the source is

kvx where vx is the voltage somewhere in the circuit to which this source is connected
– The voltage doesn’t dependent on the current that passes through; it depends on the voltage

somewhere else in the circuit completely
– Notation (vx marked in the circuit):

−+

kvx

– k is dimensionless (voltage to voltage)
2. Current-dependent voltage source: voltage provided is kix, like the voltage-dependent voltage

source but for current
– Notation (ix marked in the circuit):

−+

kix

– k has dimensions of voltage over current, V/A
3. Voltage-dependent current source: current output is kvx

– Notation (vx marked in the circuit):

kvx

– k has dimensions of current over voltage, A/V
4. Current-dependent current source: current output is kix

– Notation (ix marked in the circuit):

kix

– k is dimensionless (current to current)
• Just like independent sources, perfectly linear dependent sources don’t exist in the real world, but under

certain conditions we can use them to model real things

2



Other Circuit Elements
• Resistors: ratio of voltage over current is always a constant, v

i
= R

– Notation:
R

+ −
v

i

– The relation v

i
= R is only true when PSC holds (when it doesn’t, we need a minus sign)

– R has units of A/V = Ω (Ohm)
– Alternatively, G = 1

R
is the conductance (as opposed to R being the resistance), which has units

of Ω−1 = ℧ (mho) or Siemens Si
– Assuming R is positive, power going through will always be positive, i.e. the resistor always

consumes power

Lecture 5, Jan 26, 2022
Resistors Continued

• Extreme cases of Ohm’s law
1. R = 0 =⇒ ∀i, v = 0; this is called a short circuit

– A path with zero resistance is called an ideal conductor

–

0Ω
+ −

v

i

≡ i

– All parts of a circuit connected by ideal conductors can be considered the same node in a
circuit

2. R → ∞ =⇒ ∀v, i = 0
– This is called an open circuit

–

∞Ω
+ −

v

i

≡

Structure of a Circuit
• Node: A junction of two or more circuit elements
• Path: Start from one node, and if no other node is passed through more than once except the first one

which may be passed twice, this is a path
• Loop: A path that begins and ends at the same node that consists of at least 3 nodes

Lecture 6, Jan 28, 2022
Circuit Analysis Laws

• Kirchhoff’s Current Law (KCL): The algebraic sum of the currents entering a node is zero (or the
current exiting)

– i1 i3

i2

– If we assume current entering node is positive, then i1 and i2 are positive, i3 is negative, therefore
i1 + i2 − i3 = 0 =⇒ i3 = i1 + i2

– We can also assume current leaving the node is positive, so −i1 − i2 + i3 = 0 which gets us the
same relation
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– Alternatively can be stated as “sum of current entering the node equals sum of current leaving the
node”

• Kirchhoff’s Voltage Law (KVL): The algebraic sum of the voltages in a loop are zero
– The dual of the KCL
– Note the sign changes depending on which direction you’re going

Lecture 9, Feb 2, 2022
Simplifying Series and Parallel Resistors

• Two components are connected in series if they’re connected back-to-back, and at the point of connection
there is no other current path:

R1 R2

• To find equivalent resistance in a series circuit, compare:

R1

+

−
v1

R2

+

−
v2

+

−

vtot Req

+

−

veq

+

−

vtot

– KVL gives: −vtot + v1 + v2 = 0
* Applying Ohm’s law: v1 = R1itot and v2 = R2itot

* Substituting the voltages back in: −vtot + R1itot + R2itot = 0 =⇒ vtot = (R1 + R2)itot

* Compare this to Ohm’s law for the second circuit, we see that the equivalent resistance is
R1 + R2

* This generalizes to any number of resistors to give Req = R1 + R2 + · · · + Rn

* In the extreme cases, if one resistor is an open circuit R = ∞, the entire circuit can be
considered as an open connection; if one resistor is a short circuit, then it wouldn’t have any
effect

• Two components are connected in parallel if they share two common nodes:

R1 R2

• To find equivalent resistance in a parallel circuit, compare:

R1

i1

R2

i2+

−
vtot Req

itot+

−
vtot

– KCL gives: itot = i1 + i2

* KVL gives: vtot = Rii1 = R2i2 =⇒ i1 = vtot

R1
, i2 = vtot

R2
* itot = vtot

R1
+ vtot

R2

* Compare this to circuit 2 we get 1
Req

= 1
R1

+ 1
R2

=⇒ Req = 1
1

R1
+ 1

R2

= R1R2
R1 + R2

• Alternatively, the equivalent conductance of two resistors in parallel is the sum of the
conductances

* The conductance relation generalizes to any number of resistors; however R1R2
R1 + R2

becomes
R1R2R3

R1R2 + R2R3 + R1R3
for 3 resistors, R1R2R3R4

R1R2R3 + R1R2R4 + R1R3R4 + R2R3R4
and so on
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* In the extreme cases, if one resistor is a short circuit, then the entire circuit can be considered
a short circuit; if one resistor is an open connection, then it does not have an impact (since
1
R

→ 0)

Lecture 10, Feb 2, 2022
Voltage Division

• Consider 2 resistors in series:
itot

R1

+

−
v1

R2

+

−
v2

+

−

vtot

itot

R1 + R2

+

−

vtot

– We want to know how the voltage vtot is divided between the two resistors
* KVL gives: vtot = v1 + v2

* Ohm’s law gives itot = v1
R1

= vtot

R1 + R2
=⇒ v1 = R1

R1 + R2
vtot

• Voltage drop across a resistor in a series circuit is R

Rtot
times the total voltage drop (note the polarities

have to match)
– If the polarity of the resistor matches the polarity of vtot then the relation works; if it’s opposite

then we get the voltage negative instead

Lecture 11, Feb 4, 2022
Current Division

• Similar rule can be found for current in a parallel circuit:
itot

R1

i1

R2

i2+

−
vtot Req = R1R2

R1 + R2

itot+

−
vtot

– vtot = R1i1 = R1R2
R1 + R2

itot =⇒ i1 = R2
R1 + R2

itot

• The current division principle is the dual of the voltage division principle; note the current division
ratio uses the resistances of the other branches ( R2

R1 + R2
for current, R1

R1 + R2
for voltage)

• As with voltage division, the signs only work if the direction of i1 matches the direction of itot; if the
directions don’t match, we need an additional negative sign

• We can write this in terms of the conductance as i1 = G1
G1 + G2

itot, similar to the voltage law
• For multiple resistors in series, we can either use the conductances, or collapse the other resistors down

to a single resistor; for 3 resistors it becomes i1 = R2R3
R1R2 + R2R3 + R1R3

itot and so on

• Can also be written as i1 =
1

R1
1

R1
+ 1

R2
+ 1

R3

itot
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Lecture 12, Feb 7, 2022
Nodal Analysis

• Nodal analysis is an algorithmic method for circuit analysis; it finds the node voltages at every node in
the circuit

– Define node voltage as the voltage between a node and a reference point (common ground), with
positive polarity at the node and negative polarity at the reference point

– The reference (ground) node is typically denoted with a ground symbol: or
• Apply KCL for every node in terms of the node voltages

– Voltage between two nodes is the difference of their nodal voltages
– vAB = vA − vB and vBA = vB − vA

• Procedure:
1. Find all the nodes in the circuit and label them, choose one as ground

– Choice of ground node is arbitrary but sometimes it can simplify the math
– Choose the node that’s connected to the highest number of voltage sources; prefer independent

sources over dependent sources
2. Assume current directions/signs (negative for current entering node, positive for current leaving)
3. Write KCL for all the ungrounded notes

– Current sources: we have voltage directly, resistors: use Ohm’s law
– If we have a voltage source between the ground node and another node, we can get the voltage

of that node directly
– Usually we always write the current that leaves a node via a resistor since it gives a positive

sign
4. Solve the system for the nodal voltages and use the nodal voltages to find anything else needed

• Example circuit 1:

1A

6Ω

3A4Ω 2Ω

v1 v2

– KCL at node 1: −1 + v1 − 0
4 + v1 − v2

6 = 0

* KCL at node 2: 3 + v2 − 0
2 + v2 − v1

6 = 0

* Solution: v1 = 2
3V, v2 = −13

2 V
• Example circuit 2:

−
+10V

1Ω 8Ω 5Ω

−
+ 20V4Ω 2Ω

v1 v2 v3 v4

– We get v1 = 10V, v2 = 20V immediately
* Node 2: v2 − v1

1 + v2 − 0
4 + v2 − v3

8 = 0

* Node 3: v3 − v2
8 + v3 − 0

2 + v3 − v4
5 = 0

* Solution: v2 = 7.82V, v3 = 6.03V
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Lecture 13, Feb 9, 2022
Nodal Analysis With Voltage Sources

• When there is a dependent source, express the parameter that the source depends on in terms of nodal
voltages

• When there is an ungrounded voltage source, instead of writing KCL for the two nodes separately, write
KCL for the “supernode” that combines the two nodes connected by the source

– This reduces the number of equations by 1, but we can get this equation back by relating the
voltages of the two nodes using the voltage source; inside the supernode one node is kept at a
higher voltage than the other by the source

– This extra equation is called the supplementary equation for the supernode
• Example circuit 1:

−
+ 4V 2vx

2Ω

+−
vx

1Ω

7A

3Ω

vA

vB
vC

– vA = 4V
– In this case, vx = vC − vA

– At node B: 7 + vB

3 + vB − vC

1 = 0

– At node C: vC − vA

2 + vC − vB

1 − 2(vC − vA) = 0
• Example circuit 2:

− +

4I0 2v0 2Ω

−
+ 10V1A 4Ω 1Ω 4Ω

I0

1Ω
+ −

v0

v1 v2 v3 v4

– v4 = 10V
– I0 = v3

4 , v0 = v1 − v3

– Combine nodes 1 and 2 into a supernode: −1 + v1
4 + v1 − v3

1 + v2
1 − 2(v1 − v3) = 0

– At node 3: 2(v1 − v3) + v3 − v1
1 + v3

4 + v3 − v4
2 = 0

– 2 equations, 3 unknowns (v1, v2, v3); the last equation comes from the voltage source between
nodes 1 and 2, producing v2 − v1 = 4v3

4
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Lecture 14, Feb 11, 2022
Mesh Analysis

• When there are a lot of components connected in series, there are a lot of nodes so nodal analysis is not
as efficient computationally

• Nodal analysis is preferred when there are lots of parallel connections since there are fewer nodes; mesh
analysis is preferred when there are lots of series connections since there are fewer meshes

• Definition: A mesh is a type of loop that does not have any other loop inside it
• In mesh analysis the objective is finding all the mesh currents; with the mesh currents we can find all

voltages and currents
– We do this by writing KVL for all the meshes in terms of mesh currents

• Steps for mesh analysis:
1. Identify all meshes in the circuit
2. Associate a circulating current with each mesh (the mesh current)

– These currents are hypothetical currents that can have any direction (commonly clockwise,
stick to one direction to reduce mistakes)

– These are not branch currents (which are the real currents through the branches)
– Branch currents can be expressed in terms of mesh currents by adding all the mesh currents

that pass through the branch with the right sign
3. Write KVL for all the meshes in terms of the mesh voltages
4. Solve for all mesh currents and use the mesh currents to solve for voltages and currents as needed

• Example circuit:

−
+7V

2Ω ix
6Ωiy

−
+ 10V4Ω

iz

i1 i2

– Two meshes (the 2 inner loops)
– ix = i1, iy = −i2, iz = i1 − i2
– For mesh 1: −7 + 2ii + 4(i1 − i2) = 0
– For mesh 2: 4(i2 − i1) + 6i2 + 10 = 0
– Now we can solve for i1 and i2

Lecture 15, Feb 14, 2022
Mesh Analysis With Current Sources

• When there’s a current source at the edge of a circuit, we can get the branch current from the source
directly

• For dependent current (or voltage sources), express the variable that it depends on in terms of mesh
currents, similar to nodal analysis

• When there’s a current source shared by two meshes, combine the two meshes into a single “supermesh”
like a supernode for nodal analysis and write KVL for this supermesh

– This takes away one equation, but another equation can be written for the current source
• Mesh analysis can only solve planar circuits (all the circuits we see in this course are planar)

Lecture 16, Feb 16, 2022
Source Transformation

• This method is not as strong as nodal analysis or mesh analysis, but gives insight into circuit analysis
• Consider 2 circuits:
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−
+vs

R

RL

iL1

is RL

iL2

R

– For circuit 1, iL1 = vs

R + RL
by Ohm’s law

* For circuit 2, iL2 = is
R

R + RL
by current division

* If both circuits are equivalent, then we’ll get iL1 = iL2 =⇒ vs

R + RL
= is

R

R + RL
=⇒ vs =

isR
• Source transformation: We can transform a voltage source with a resistor in series to a current source

with a resistor in parallel if vs = Ris

– The direction of the sources do not follow PSC
• Example circuit: Find the power of the 6V source:

−
+6V

4Ω 6Ω 5Ω

−
+ 40V

10Ω

30Ω 20Ω

– Convert voltage source with series resistor to current source with parallel resistor:

−
+6V

4Ω 6Ω

5Ω

10Ω

30Ω 20Ω 8A

– Now we can simplify the two resistors in parallel on the right side:

−
+6V

4Ω 6Ω

4Ω

10Ω

30Ω 8A

– Now transform the current source and parallel resistor to a voltage source and a series resistor:

– Simplify series resistors:
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– Convert voltage source to current source:

– Simplify parallel resistors:

– Convert current source to voltage source:

– Simplify series resistors:

– Now we can use KVL on this loop to find the current in this circuit and get the power
• If we have a voltage source in parallel with a resistor, the value of the resistance does not affect the

voltage distributed to the rest of the circuit, so it doesn’t impact the rest of the circuit
– Since the resistor has no affect on the rest of the circuit, we can remove it altogether (open the

circuit)
• If we have a current source in series with a resistor, the value of the resistance does not affect the

current distributed to the rest of the circuit, so it has no impact either
– Since it has no affect, we can remove it (short the circuit)
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Lecture 17, Feb 18, 2022
Superposition Principle

• Linear circuit: A circuit that consists of independent sources, linear dependent sources, and linear
elements

– Examples of linear elements include resistors, capacitors and inductors
• Superposition principle: The response of a linear circuit to multiple independent sources is equal to the

algebraic sum of the responses caused by each independent source acting alone
– This allows us to look at only one independent source at a time to simplify the problem

• Example circuit: Find the voltage vx:

−
+6V

8Ω

3A4Ω
+

−
vx

– Phase 1: Deactivate the voltage source
* To deactivate a voltage source, we short it out so the voltage is zero:

8Ω

3A4Ω
+

−
vx

* Now the resistors are in parallel; use current division: ix1 = 3 8
4 + 8 = 2A, so vx1 = 4ix1 = 8V

– Phase 2: Deactivate the current source
* To deactivate a current source, we open the circuit so the current is zero:

−
+6V

8Ω

4Ω
+

−
vx

* Now the resistors are in series; use voltage division: vx2 = 6 4
4 + 8 = 2V

– The voltage across vx with the two sources combined is vx = vx1 + vx2 = 10V

Lecture 18, Feb 28, 2022
Thevenin Equivalent Circuit

• Equivalent circuits allow us to simplify parts of circuits so we still get the same behaviour elsewhere
• Thevenin’s Theorem: A linear circuit can be replaced by a series connection of a voltage source

(Thevenin voltage) and a resistor (Thevenin resistance) (Thevenin equivalent circuit), to give the same
current and voltage outside the circuit

– This generalizes equivalent resistances and source transformation to an equivalent circuit of any
linear element

• The Thevenin voltage is the same as the open circuit voltage between the terminals
– i.e. remove the load (rest of the circuit) and open the circuit, find the voltage this way and that is

the Thevenin voltage
– The open circuit voltage can be found using any circuit analysis technique (e.g. nodal/mesh

analysis)
– The polarity of the voltage source must match that of the open circuit voltage found

• The Thevenin resistance can be found through 3 different methods:
1. If the circuit does not include a dependent source (i.e. only resistors and independent sources):
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deactivate all the independent sources (short voltage sources, open current sources); the equivalent
resistance is the Thevenin resistance

2. If the circuit includes at least 1 independent source: find the open circuit voltage Voc and short
circuit current isc; then RT h = Voc

isc
(Voc and isc must have directions conforming to PSC)

– This method is essentially based on source transformation; we find the Thevenin and Norton
voltage/current and use source transformation to relate the two by the Thevenin/Norton
resistance

3. Otherwise (applies to any linear circuit):
1. Deactivate all independent sources
2. Add a test current source of iT between terminals
3. Find the voltage across the current source vT , not conforming to PSC
4. RT h = vT

iT
• Alternatively, don’t deactivate any sources, connect a current source of IT and find voltage VT across it;

then VT = MIT + N , and N = VT h, M = RT h

– This allows you to find both the Thevenin voltage and resistance by solving just one circuit, but
you have to work with IT as an unknown

Lecture 19, Mar 2, 2022
Norton Equivalent Circuit

• The Norton Equivalent Circuit is the dual of the Thevenin Equivalent Circuit; instead of a voltage
source in series with a resistor, in a Norton Equivalent Circuit the elements are replaced by a current
source in parallel with a resistor

– Thevenin and Norton circuits can be transformed into each other via source transformation
– The Norton resistance is the same as the Thevenin resistance: RN = RT h

– The Norton current can be obtained by IN = VT h

RT h
via source transformation

– Alternatively, short the terminals, and then IN is the current flowing through this short
• If using a short circuit to find the Norton current, the direction of the current source must complete the

loop with the short circuit current

Lecture 20, Mar 4, 2022
Maximum Power Transfer

•

−
+vs

Rs iL

RL

• Consider a voltage source connected to a resistor in series and then connected to a load; how do we
extract maximum power from this voltage source? What RL maximizes power?

– PL = RLi2
L

– iL = vs

Rs + RL
=⇒ PL = RLv2

s

(Rs + RL)2

– To maximize PL we differentiate it

– dPL

dRL
= v2

s(RL + Rs)2 − 2(RL + Rs)RLv2
s

(RL + Rs)4 = v2
s((RL + Rs) − 2RL)

(RL + Rs)3 = 0

– The only way for the derivative to equal zero is if RL + Rs = 2RL =⇒ RL = Rs

– Plugging in RL = Rs =⇒ PLmax
= v2

s

4R2
s

= v2
s

4RL
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• For a voltage source and resistor, max power transfer is achieved when the load resistance equals the

resistance attached to the voltage source, with max power being v2
s

4Rs

– For any complicated circuit we can find its Thevenin equivalent and turn it into a voltage source
with resistor in series

Lecture 21, Mar 7, 2022
Operational Amplifiers (Op-Amps)

• Op amps have 3 terminals that are relevant for this course: the positive (non-inverting) terminal, the
negative (inverting) terminal, and then output terminal

– Inverting input has voltage v1 and current i2, non-inverting input has voltage v2 and current i2;
output has voltage vout and current iout (voltages measured wrt ground)

– The symbol is
−

+

• If there is a path between the inverting input and output (either a short or any resistance), then the op
amp as a negative feedback connection

– Under a negative feedback connection, v1 = v2, i.e. it forces 2 voltages to be the same (under ideal
conditions), and i1 = i2 = 0 (infinite input impedance)

• In this course we only discuss ideal op amps
• Example circuit:

−
+

Vin

Rin

−

+

Rout

+

−
Vout

– The path from the output to the inverting input forces v2 = v1, therefore the current through Rin

is Vin

Rin
* No current goes into the op amp so current through Rf is also Iin

* Since v2 = 0 the current through Rf is also −Vout

Rf

* Equating these currents: Vin

Rin
= Iin = Vout

Rf
=⇒ Vout

Vin
= − Rf

Rin

* This circuit is called an inverting amplifier since it switches the polarity, and amplifies it by a
gain of − Rf

Rin
• If the input voltage now goes into the noninverting input, the output voltage is no longer inverted, so

this is now a noninverting amplifier :
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Rin

−

+

Rout

+

−

Vout
−
+

Vin

• In general, to solve an op amp circuit when there is a connection from output to inverting input, first try
to find either v1 or v2, and then use the relationship v1 = v2 to find the voltage at the other terminal,
and then solve the rest of the circuit

Lecture 22, Mar 9, 2022
Capacitors

• A capacitor consists of 2 conducting plates separated by an insulator; when connected to a voltage,
charges accumulate on the plates, creating an electric field and storing energy:

−
+

V (t) c
+

−
v

– The accumulated charge is proportional to the voltage: q(t) = cv(t)
* c is the capacitance, and is determined by the physical characteristics of the capacitor (similar

to resistance for a resistor)
* Capacitance has units of Coulombs per volt or farads: C/V = F

• In practice one farad is a very large capacitance; most capacitors are in the order of
microfarads or smaller

• Translating this into current: i = dq

dt
= d

dt
cv(t) =⇒ i(t) = c

dv

dt
– Current passing through a capacitor is proportional to the rate of change of voltage
– This relation holds if PSC holds; otherwise i = −c

dv

dt

• In the other direction:
� t2

t1

c
dv

dt
dt =

� t2

t1

i(t) dt =⇒ v(t2) − v(t1) = 1
c

� t2

t1

i(t) dt

– v(t) = v(0) + 1
c

� t

0
i(τ) dτ

– To find the voltage of a capacitor at time t, integrate the current
– We need both the current function and a known value of v(t), unlike with current from voltage

where we only need the voltage function
• Properties of capacitors:

c

+ −
v

i

1. If the voltage is constant (i.e. DC), then current is always 0, since dv

dt
is 0

– A capacitor can be modelled as an open circuit in a DC circuit
2. The voltage of a capacitor cannot change abruptly; a discontinuity in voltage creates an infinite

dv

dt
and infinite current
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• Find energy of a capacitor: W (t2) − W (t1) =
� t2

t1

P (t) dt

=
� t2

t1

v(t)i(t) dt

=
� t2

t1

cv(t)dv

dt
dt

= c

� t2

t1

v dv

= 1
2c(v2(t2) − v2(t1))

– Assuming capacitor is unchanged at t = 0 (i.e. v(0) = 0), W (t) = 1
2cv2(t)

– An ideal capacitor does not dissipate energy; it only stores and delivers energy
• Although an ideal capacitor stops all DC current, a physical capacitor has some leakage current
• A real capacitor can be modelled as an ideal capacitor in parallel with a leakage resistance of RL,

typically in the hundreds of megaohms

Lecture 23, Mar 11, 2022
Series and Parallel Connections of Capacitors

• Suppose we have n capacitors c1, · · · , cn connected in parallel
– Each capacitor has a current ik = ck

dvk

dt
but the capacitors all have the same voltage, so ik = ck

dv

dt
– To find the equivalent capacitance, we need to find the total current

– itot =
n∑

k=1
ik = dv

dt

n∑
k=1

ck =⇒ ceq =
n∑

k=1
ck

• The equivalent capacitance for capacitors in parallel is the sum of all the capacitances
• Suppose we have n capacitors c1, · · · , cn connected in series

– All capacitors have the same current and each has a voltage vk

– KVL gives vtot =
n∑

k=1
vk =⇒ dvtot

dt
=

n∑
k=1

dvk

dt
=

n∑
k=1

1
ck

i = i

n∑
k=1

1
ck

=⇒ 1
ceq

=
n∑

k=1

1
ck

• The equivalent capacitance for capacitors in series is the reciprocal of the sum of the reciprocals of the
capacitances

– For c1 and c2 in series, ceq = c1c2
c1 + c2

• The behaviour in series vs parallel for capacitors is opposite that of resistors

Inductors
• An inductor consists of a coil of conducting wire with a core of any material
• Like a capacitor, an inductor stores energy, this time in a magnetic field generated as current passes

through it
– Since the energy density for a magnetic field is much larger than that of an electric field, the

energy that can be stored in an inductor is much larger than a capacitor
• Inductor symbol:

L

+ −v

i

• For an inductor, voltage is related to current by v = L
di

dt
; an inductor is the dual of a capacitor

– L is the inductance and has units of henry H
* The larger the value of L, the more energy can be stored in the inductor
* L depends on the kind of core used in the inductor
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– This relation only holds if PSC holds

• To get current from voltage we can integrate: i(t2) = i(t1) + 1
L

� t2

t1

v dt or i(t) = i(0) + 1
L

� t

0
v(τ) dτ

• Properties of inductors:
1. If the current is constant, then the voltage is always 0

– In a DC circuit (in steady state) the inductor can be modelled by a short
2. The current of an inductor cannot change abruptly since that would create an infinite voltage

• Energy of a capacitor: W (t2) − W (t1) =
� t2

t1

P (t) dt

=
� t2

t1

v(t)i(t) dt

=
� t2

t1

Li(t)di

dt
dt

= L

� t2

t1

i di

= 1
2L(i2(t2) − i2(t1))

– Assuming no magnetic field at t = 0, W (t) = 1
2Li2(t)

– Like an ideal capacitor, an ideal inductor does not dissipate energy and only stores it
• The equivalent inductance of inductors in series is the sum of the inductances; in parallel it’s the

reciprocal of the sum of the reciprocals (like resistors)

Lecture 24, Mar 14, 2022
Source-Free RC Circuits

• In a first-order transient circuit, the relationship between current and voltage can be described by a
first-order differential equation

– These are either RC or RL circuits (resistors and capacitors/inductors)
– They can have sources or no sources

• Consider a source-free RC circuit:

C
−

+
vc(t)

t = 0

ic(t)

R

– Suppose before time 0 the capacitor is energized to vc(0−) = V0, and then at time 0, the switch is
closed and the energizing circuit is removed

* KVL gives: vc(t) + Ric(t) = 0 =⇒ vc(t) + RC
dvc

dt
= 0 =⇒ vc = −RC

dvc

dt

* This is a separable equation:
� 1

vc
dvc =

�
− 1

RC
dt =⇒ ln(vc) + K = − t

RC

* Rearranging: vc(t) = Ae− t
RC

* Solving for initial conditions with vc(0) = V0, we obtain vc(t) = V0e− t
RC

• Note we can do this because a capacitor’s voltage cannot change abruptly, so vc(0+) =
vc(0−) = V0

• We could not have started with current because we don’t know the current at 0+

* The current is then ic(t) = C
dvc

dt
= −V0C

RC
e− t

RC = −V0
R

e− t
RC or V0

R
e− t

RC not following PSC

• Note there is a discontinuity at time 0 as the current starts at 0 and jumps to V0
R

, and
then decays to 0
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• In a source-free RC circuit the voltage across the capacitor follows an exponential decay to 0
– Large RC causes slower decay; small RC causes faster decay
– Let τ = RC be the time constant of the RC circuit; τ characterizes how fast the voltage decays
– τ can be found by finding the tangent at t = 0, and finding where the tangent intersects the

horizontal axis
* dvc

dt
(0) = − V0

RC
so tangent is y = V0 − V0t

RC
; therefore when t = τ = RC the tangent intersects

the time axis
– τ has the same unit as time (seconds), so that the argument of the exponential is unitless

Lecture 25, Mar 16, 2022
Step Response of an RC Circuit

• What happen if we add an independent source to the RC circuit?

•
−
+

Vs

R ic

C
+

−
vC

– KVL gives: −Vs + RiC + vC = 0
* iC = C

dvC

dt
=⇒ −Vs + RC

dvC

dt
+ vC(t) = 0 =⇒ dvC

dt
= −(vc(t) − Vs)

RC

* This is again separable:
� 1

vC(t) − Vs
v. C = −

� 1
RC

dt

=⇒ ln(vC(t) − Vs) = − t

RC
+ K

=⇒ vC(t) − Vs = Ae− t
RC

=⇒ vC(t) = Ae− t
RC + Vs

* Using the initial condition that vC(0+) = V0 =⇒ V0 = A + Vs =⇒ A = V0 − Vs

* Finally, vC(t) = Vs + (V0 − Vs)e− t
RC

• As t → ∞ we have vC(t) → Vs

– At t = 0 there is a sharp corner as the voltage starts either increasing or decreasing and exponentially
decaying to Vs

• To find the current: iC(t) = C
dvC

dt
= Vs − V0

R
e− t

RC

– At t = 0 there is a discontinuity in the current as it jumps to Vs − V0
R

; as t → ∞, iC → 0

• In general vC(t) = vC(∞) + (vC(0) − vC(∞))e− t
RC

• This can also be applied to any general linear circuit connected to the capacitor by finding its Thevenin
equivalent

• The result can be broken down into two parts: a contribution from the initial voltage, and a part from
the source: vC(t) = Vs(1 − e− t

RC ) + V0e− t
RC

– The second part is exactly the behaviour of the source-free circuit
– The first part is called the forced response, and the second part is the natural response
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Lecture 26, Mar 18, 2022
Source-Free RL Circuits

• Consider a source-free RL circuit:

L

−

+
vL(t)

t = 0

iL(t)

R

+

−
vR

– Initial condition: iL(0) = I0
* Since the current of an inductor cannot change abruptly, we find the current
* KVL: vL − vR = 0 =⇒ L

diL

dt
+ iR = 0

* Solving the differential equation:
� 1

iL
diL = −

� 1
L
R

dt =⇒ ln(iL(t)) + K = − t
L
R

* Solution is iL(t) = Ae− t
L/R

* Using the initial condition gives A = I0, giving iL(t) = I0e− t
L/R = I0e− t

τ where τ = L

R
is the

time constant for an RL circuit
• Larger time constant means slower decay
• Similar to τ for a capacitor, the time constant can be found by the intersection of the

tangent line at t = 0 with the time axis

* Voltage: vL = L
diL

dt
= −RI0e− t

τ

Lecture 27, Mar 21, 2022
Step Response of an RL Circuit

• Consider an RL circuit with an voltage source that turns on at t = 0, with the inductor initially charged
with a current of I0:

−
+

Vs

R iL

L

– KVL: − Vs + RiL(t) + L
diL

dt
= 0

=⇒ iL(t) − Vs

R
= − L

R

diL

dt

=⇒
� 1

iL(t) − Vs

R

diL =
�

− 1
L/R

dt

=⇒ ln
(

iL(t) − Vs

R

)
+ K = − t

L/R

=⇒ iL(t) = Vs

R
+ Ae− t

L/R

* Using the initial condition of iL(0) = I0 =⇒ A = I0 − Vs

R

* iL(t) = Vs

R
+
(

I0 − Vs

R

)
e− t

L/R = Vs

R
+
(

I0 − Vs

R

)
e− t

τ

* vL(t) = L
diL

dt
= (Vs − RI0) e− t

L/R
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• The current starts at I0 and exponentially decays towards Vs

R
, the final value for current (at which

point the inductor is a short circuit)
– At t = 0 this is accompanied by a jump in the voltage

• The time constant τ is given by L

R
• As with the RC case, iL(t) = iL(∞) + (iL(0) − iL(∞))e− t

τ

– iL(∞) = Vs

R
because the inductor becomes a short circuit

– iL(0) = I0

Lecture 28, Mar 23, 2022
Sinusoids and Phasors

• Many AC sources generate sinusoidal voltages and currents (e.g. power generators, the power grid)
• Generally v(t) = Vm sin(ωt + α) for a sinusoidal voltage

– Vm is the amplitude of the sinusoidal voltage in volts
– ω is the angular frequency, in rad/s
– t is time in seconds, so that ωt has units of rad

* The period is related by T0 = 2π

ω
, or ω = 2π

T0
* T0 is the fundamental period, the smallest possible period

– α is the phase/phase angle/initial phase/etc in radians
* Note sometimes α may be given in degrees, in which case you need to multiply by π

180° to
convert to radians

* A signal with larger α leads another signal, while a smaller α lags another signal
* Phase leads or lags are commonly expressed with an angle in the −π to π range (e.g. “leading

by 270°” is unconventional)
– We also define frequency (as opposed to angular frequency) as f = 1

T0
= ω

2π
with units of s−1 = Hz

• Note the phase difference between two sinusoidal signals is α1 − α2 in radians, but to convert this to
time we need to divide by ω

– If two ω are different for two signals, the phase difference is undefined
– Cosine has an additional phase offset of +π

2 when compared to sine
– Adding a phase offset of 180° negates the sign
– sin(α ± 180°) = − sin(α)
– cos(α ± 180°) = − cos(α)
– sin(α ± 90°) = ± cos(α)
– cos(α ± 90°) = ∓ sin(α)

• Often sinusoidal signals are defined with a cosine function as v(t) = Vm cos(ωt + α)
• Using Euler’s formula, Vmej(ωt+α) = Vm cos(ωt + α) + jVm sin(ωt + α) (where j2 = −1)

– v(t) = Re
(

Vmej(ωt+α)
)

= Re
(
Vmejαejωt

)
– For a given ω, v(t) is uniquely determined by a complex number Vmejα (magnitude is Vm, argument

is α)
* This complex number is the phasor for the voltage, indicated by V = Vmejα

• Similarly for currents, the phasor for i(t) = Im cos(ωt + α) is I = Imejα
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Lecture 29, Mar 25, 2022
Phasors (Continued)

• Phasors are often shown on a phasor diagram on a complex plane, where the length is the magnitude,
and the angle is the phase offset

• Alternatively they can be expressed as V = Vm∠α = Vmejα

• Example: Phasor for v(t) = Vm cos(377t + 60°) is V = Vmej60°; phasor for i(t) = Im sin(377t + 30°) is
I = Ime−j60°

– Note phasors are defined in terms of cosines, which is why 30° becomes −60°
– Also note how the frequencies don’t affect the phasors

• Phasors can be used to add together two sinusoids in frequency domain
• Example: Using phasors, find the sum of i1(t) = 4 cos(ωt + 30°) and i2(t) = 5 sin(ωt − 20°)

– I1 = 4ej30°, I2 = 5e−j110°

– Convert phasors to rectangular format to add them: I1 = 4 cos(30°)+4i sin(30°), I2 = 5 cos(−110°)+
5i sin(−110°)

– I1 + I2 = 1.754 − 2.698j = 3.218e−j56.98°

Derivatives and Integrals of Sinusoids
• v(t) = Vm cos(ωt + α) =⇒ V = Vmejα

• dv

dt
= −Vmω sin(ωt + α) = Vmω cos

(
ωt + α + π

2

)
=⇒ V = Vmωej(α+ π

2 ) =
(
ωej π

2
) (

Vmejα
)

= jωVmejα

• Taking the time-domain derivative multiplies the phasor by jω

•
�

v(t) dt = Vm

ω
sin(ωt + α) = Vm

ω
cos
(

ωt + α − π

2

)
=⇒ V = Vm

ω
ej(α− π

2 ) =
(

1
ω

e−j π
2

)(
Vmejα

)
= − j

ω
Vmejα

= 1
jω

Vmejα

• Taking the time-domain integral multiplies the phasor by 1
jω

(i.e. divide by jω)

Phasor Relations for R, L, C
• Suppose i(t) = Im cos(ωt + θi) =⇒ I = Imejθi passes through a resistor

– Assuming PSC, by Ohm’s law, v(t) = Ri(t) = RIm cos(ωt + θi) =⇒ V = RImejθi =⇒ V = RI
• V = RI for a resistor; voltage and current are in phase

– In the phasor diagram, a resistor only changes the length of the phasor and does not rotate it
• For an inductor: v(t) = L

di

dt
in the time domain, so in the phasor domain, V = jωLI

– Since j = ej90°, an inductor introduces a 90° phase difference (voltage leads current by 90°)
– The magnitude is scaled by ωL
– In the phasor diagram, the two phasors have an angle of 90° relative to each other

• For a capacitor: i(t) = C
dv

dt
in the time domain, so in the phasor domain, I = jωCV or V = 1

jωC
I

– A capacitor also introduces a 90° phase difference (voltage lags current by 90°)
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Lecture 30, Mar 28, 2022
KVL and KCL in the Phasor Domain

• Regular KVL on a loop gives
n∑

i=1
vi(t) = 0

=⇒
n∑

i=1
Vi cos(ωt + αi) = 0

=⇒ Re
{

n∑
i=1

Vie
jαiejωt

}
= 0

=⇒ Re
{(

n∑
i=1

Vie
jαi

)
ejωt

}
= 0

=⇒
n∑

i=1
Vi = 0

• Similarly for KCL on a node,
n∑

i=1
In = 0

• Both KVL and KCL hold in the phasor/frequency domain

Impedance
• Consider a general circuit element:

+ −
v(t)

i(t)

– Suppose v(t) = Vm cos(ωt + θv) and i(t) = Im cos(ωt + θi)

• Impedance for this element is defined as Z = V

I
= Vm∠θv

Im∠θi
=
(

Vm

Im

)
∠(θv − θi) where V and I are the

phasors for the voltage and current (assuming PSC)
– Impedance is similar to resistance in a DC circuit
– Unit for impedance is ohms
– Expressed in rectangular form, Z = R + jX

* The real part R is the resistance
* The imaginary part X is the reactance
* Both have units of ohms

• Similar to conductance in DC circuits, for AC define the admittance as Y = I

V
= 1

Z
– Admittance has the same units as conductance, Siemens or mhos
– Expressed in rectangular form, Y = G + jB, where G is the conductance, and B is the susceptance,

both having units of Siemens

Impedance Relations for Passive Components
• For a resistor:

R

+ −
v(t)

i(t)

– ZR = V

I
= RI

I
= R

* The impedance of a resistor is just the resistance of that resistor
* A resistor has no reactance; voltage and current are always in phase

• For an inductor:
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L

+ −
v(t)

i(t)

– ZL = V

I
= jωLI

I
= jωL

* The impedance of an inductor is entirely imaginary, i.e. it has no resistance but ωL reactance
* Note the impedance is dependent on frequency; when ω → 0, ZL → 0, and when ω → ∞,

ZL → ∞
* An inductor affects higher frequency signals more
* Intuitively, decreasing the frequency makes the current closer to DC conditions, under which

the inductor is a short circuit
• For a capacitor:

C

+ −
v(t)

i(t)

– ZC = V

I
= V

jωCV
= 1

jωC
= − j

ωC

* The impedance of a capacitor is also pure imaginary; resistance is zero and reactance is − 1
ωC

* When ω → 0, ZC → ∞; when ω → ∞, ZC → 0
* A capacitor affects lower signal frequencies more
* Intuitively, lower frequencies are closer to DC conditions, under which a capacitor is an open

circuit

Equivalent Impedances
• Consider a number of impedance elements in series; all elements have the same I so across each there is

a voltage of Vi = ZiI, so V = I

n∑
i=1

Zi =⇒ V

I
=

n∑
i=1

Zi

• The equivalent impedance for a series connection is Zeq =
n∑

i=1
Zi

• For a parallel connection the impedance is 1
Zeq

=
n∑

i=1

1
Zi

Lecture 31, Mar 30, 2022
Impedance of RL, RC, LC, and RLC circuits

• For an RL circuit:
R L

– ZRL = ZR + ZL = R + jωL
* The real part of the impedance for an RL circuit is the resistance of the resistor; the imaginary

part is ωL, frequency times the inductance of the inductor
* Combining R and L gives both a resistance and a reactance
* The angle depends on both R and L; if ZR ≫ ZL then ∠ZRL → 0; if ZR ≪ ZL then
∠ZRL → 90°

* The phase difference is 0 < θv − θi < 90°; greater resistance leads to less phase difference,
while greater inductance leads to more phase difference

* Voltage leads current by some amount between 0° and 90°
• For an RC circuit:
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R C

– ZRC = ZR + ZC = R − j

ωC
* This time the angle is between 0° and 90° since the imaginary part (reactance) is negative
* ZR ≫ ZC =⇒ ∠ZRC → 0 and ZR ≪ ZC =⇒ ∠ZRC → −90°
* Voltage lags current by some amount between 0° and 90° (current leads voltage)

• For an LC circuit:
L C

– ZLC = ZL + ZC = j

(
ωL − 1

ωC

)
* The impedance of an LC circuit is entirely imaginary (no resistance)
* The imaginary part can be positive or negative, depending on the relative values of the

inductance and capacitance
• ωL >

1
ωC

=⇒ Im ZLC > 0, and voltage leads current by 90°

• ωL <
1

ωC
=⇒ Im ZLC < 0, and voltage lags current by 90°

• For an RLC circuit:
L C R

– ZRLC = ZR + ZC + ZL = R + j

(
ωL − 1

ωC

)
* The real part is positive, the imaginary part can be positive or negative depending on the

relative values of inductance and capacitance
* The angle is between −90° and 90°; sign follows the same pattern as for an LC circuit

Sinusoidal Steady State Analysis
• Since all the laws and techniques (KVL, KCL, etc) still hold in the phasor domain, we can analyze AC

circuits in the same way
• Convert the circuit into phasor domain (resistances, inductances, and capacitances to impedances), and

use Z = V

I
in the same way that R = v

i
is used in DC circuits

– Convert the phasors back to time domain afterwards if desired
• The only difference is that complex phasors are used instead of real numbers
• Example:

−
+

v(t)

C1 = 2mF L = 0.2H

R2 = 8Ω

R1 = 3Ω

C2 = 10mF

– v(t) = 20 cos(50t)V , find i(t)
* Convert the voltage to a phasor: V = 20∠0°
* For the 2mF capacitor, Z1 = −j

ωC1
= −j

50 · 2 × 10−3 = −j10Ω

* For the series RC connection in the middle, Z2 = R1 − j

ωC2
= 3 − j

50 · 10 × 10−3 = 3 − j2Ω
* For the series RL connection, Z3 = R2 + jωL = 8 + j50 · 0.2 = 8 + j10Ω
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* In the phasor domain:

−
+20∠0°

Z1

Z3Z2

* Zeq = Z1 + Z2Z3
Z2 + Z3

= 3.22 − j11.07Ω = 11.53∠ − 73.5°

* I = V

Z
= 20∠0°

11.53∠ − 73.5° = 1.73∠73.5°A
* Back to the time domain, i(t) = 1.73 cos(50t + 73.5°)

Lecture 32, Apr 1, 2022
Nodal and Mesh Analysis for AC Circuits

•
−
+

v(t)

10Ω 0.1H

0.5H0.1F
ix

2ix

– v(t) = 20 cos(4t) =⇒ V = 20∠0°
* Impedances:

• ZR = 10Ω
• ZC = − j

ωC
= − j

4 · 0.1F = −j2.5Ω
• ZL1 = jωL1 = j4 · 0.1 = j0.4Ω
• ZL2 = jωL2 = j2Ω

* In the phasor domain:

−
+20∠0°

10Ω j0.4Ω

j2Ω−j2.5Ω

+

−

V1

Ix

2Ix

−

+

V2

* Ix = V1
ZC

* V1 − 20
ZR

+ V1
ZC

+ V1 − V2
ZL1

= 0

* V2 − V1
ZL1

+ V2
ZL2

− 2 V1
ZC

* Solve the system as normal, then use nodal voltages to find phasor for Ix = V1
ZC

, and convert
to time domain

Lecture 33, Apr 4, 2022
Thevenin and Norton Equivalent Circuits for AC Circuits

• Thevenin and Norton equivalent circuits can be found for AC circuits as well
• Thevenin voltage and Norton current become the phasors for the Thevenin voltage and Norton current
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• The Thevenin/Norton resistance becomes an impedance
• Thevenin voltage/resistance and Norton current can be found in the same way as in the DC case
• Source transformation also applies for AC circuits with impedances and phasors

Power in AC Circuits
• For AC circuits P = vi also holds, but now v and i are time-variant, so additional complexity is involved
• Power is a function of time: P (t) = v(t)i(t) = v(t)i(t)

– In the time domain, v(t) = Vm cos(ωt + θv), i(t) = Im cos(ωt + θi)
– Without loss of generality change the time reference so that θv = 0
– P (t) = VmIm cos(ωt) cos(ωt − θ) where θ = θv − θi

– Use cos(α) cos(β) = 1
2 (cos(α − β) + cos(α + β))

– P (t) = VmIm

2 (cos(θ) + cos(2ωt − θ))
– This P (t) is the instantaneous power (in volt-amps)

• Instantaneous power is split into two parts: VmIm

2 cos θ, the constant part, and VmIm

2 cos(2ωt − θ),
the time-variant term

– Plotting power against time shows a sinusoid offset above the time axis
– Since cos θ ≤ 1 we always have P (t) ≤ VmIm

– θ shifts the curve up or down as well as left and right

Lecture 34, Apr 4, 2022
Different Types of Power in AC Circuits

• Instantaneous power: P (t) = VmIm

2 cos(θ) + VmIm

2 cos(2ωt − θ)

• Average power (aka real or active power): Pave = VmIm

2 cos(θv − θi)
– If we integrate the instantaneous power over one period, the time-variant second term cancels out,

and we’re left with only the first term
– Average power is in watts

• Using phasors, if
{

v(t) = Vm cos(ωt)
i(t) = Im cos(ωt − θ)

=⇒

{
V = Vm∠0°
I = Im∠ − θ

, then V I∗

2 = (Vm∠0°)(Im∠θ)
2 =

VmIm

2 ∠θ = VmIm

2 cos(θ) + j
VmIm

2 sin(θ), so Pave = Re
(

V I∗

2

)
• P (t) = VmIm

2 cos(θ) + VmIm

2 (2ωt − θ)

= VmIm

2 cos(θ) + VmIm

2 cos(2ωt) cos(θ) + VmIm

2 sin(2ωt) sin(θ)

= VmIm

2 cos(θ) (1 + cos(2ωt)) + VmIm

2 sin(θ) sin(2ωt)

• Reactive power : Q = VmIm

2 sin(θ)
– Reactive power has units of volt-amp-reactive, more commonly known as VAR

• Note that from the relation derived above for average power, we have Q = Im
(

VmI∗
m

2

)
• Instantaneous power in terms of average and reactive power: P (t) = Pave(1 + cos(2ωt)) + Q sin(2ωt)
• Conservation holds for both active and reactive power

AC Power for R, L, and C

• For a resistor voltage and current are in phase, so θv = θi =⇒ θ = 0 =⇒ Pave = VmIm

2 , Q = 0
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– For instantaneous power, we are left with only the first term: P (t) = VmIm

2 (1 + cos(2ωt))
– Plotting this gives a sinusoid with a DC offset equal to the amplitude, i.e. the value varies between

0 and VmIm

– Pave = Re
(

V I∗

2

)
= Re

(
R|I|2

2

)
= Re

(
RI2

m

2

)
= 1

2RI2
m

* This is exactly like the expression for power for DC

– Q = Im
(

V I∗

2

)
= 0

• For an inductor θv − θi = 90° so we’re only left with P (t) = VmIm

2 sin(2ωt)
– This is a sinusoid with no DC offset

* Every half-period, an inductor absorbs energy (positive power), and the next half-period it
releases the same amount of energy back

– Pave = 0
– Q = VmIm

2 sin(90°) = VmIm

2
– Alternatively Q = Im

(
jωLII∗

2

)
= 1

2ωLI2
m = 1

2XLI2
m where XL is the reactance

• For a capacitor θ = −90° so P (t) = −VmIm

2 sin(2ωt)
– This is the same as an inductor but negated; every half-period it absorbs energy, and then in the

next half-cycle it releases power back
– Pave = 0
– Q = VmIm

2 sin(−90°) = −VmIm

2
– Alternatively Q = Im

(
−jII∗

ωC

)
= − 1

2ωC
I2

m = 1
2XCI2

m where XC is the reactance

Lecture 35, Apr 6, 2022
Maximum Average Power

• Like maximum power transfer in DC circuits, we would like to know the impedance we should connect
to an arbitrary linear AC circuit to maximize average power consumed by the impedance

• Find the Thevenin equivalent, and form the circuit:

−
+

Vth

Zth

ZL

– V = ZLI

• Active power for the impedance is PL = Re
(

V I∗

2

)
= Re

(
(RL + jXL)|I|2

2

)
= 1

2RL|I|2

– In terms of the circuit parameters, I = Vth

Zth + ZL
= Vth

(Rth + RL) + j(Xth + XL)

– |I|2 = |Vth|2

(Rth + RL)2 + (Xth + XL)2

– So PL(RL, XL) = 1
2RL

|Vth|2

(Rth + RL)2 + (Xth + XL)2

– Now we have 2 parameters to optimize, RL and XL
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– ∂PL

∂XL
= RL

0 − 2(Xth + XL)|Vth|2

4((Rth + RL)2 + (Xth + XL)2)2 = 0

* Vth cannot be zero, which means the only possibility is to have Xth = −XL

– ∂PL

∂RL
= |Vth|2((Rth + RL)2 + (Xth + XL)2) − 2(Rth + RL)|Vth|2RL

4((Rth + RL)2 + (Xth + XL)2)2 = 0

* Again Vth can’t be zero so we can cancel it out
* ((Rth + RL)2 + (Xth + XL)2) − 2(Rth + RL)RL = 0
* Factor out RL + Rth: (Rth + RL)(Rth + RL − 2RL) + (Xth + XL) = 0

=⇒ R2
th − R2

L + (Xth + XL)2 = 0

=⇒ RL =
√

R2
th + (Xth + XL)2

* Note we already derived above that XL = −Xth, therefore RL = Rth

• Without constraints, the impedance that maximizes power transfer is ZL = Rth − Xth

– Max power is simply 1
2RL

|Vth|2

(Rth + RL)2 + (Xth + XL)2 = 8 |Vth|2

Rth

Lecture 36, Apr 8, 2022
Root-Mean-Square (RMS) Power

• The RMS (aka effective value) of a periodic signal x(t) with period T is given by xrms = xeff =√
1
T

� t0+T

t0

x2(t) dt

• AC voltages are often expressed in RMS
• Consider v(t) = Vm cos(ωt + θv), T = 2π

ω

– vrms =

√
1
T

� t0+T

t0

x2(t) dt

=

√
1
T

� T

0
V 2

m cos2(ωt + θv) dt

=

√
V 2

m

T

� T

0

1
2 + 1

2 cos(2ωt + 2θv) dt

=
√

V 2
m

T
· 1

2T

=
√

V 2
m

2

= Vm√
2

* Note the second term in the integral cancels since we’re integrating a sinusoidal function over
a multiple of its period

• Similarly for currents irms = Im√
2

• North American 110V AC outlets have an amplitude of 110
√

2V
• RMS values are associated with the energy in the signal and applies to non-sinusoidal periodic waveforms

as well
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Lecture 37, Apr 11, 2022
Power In Terms of RMS Values

• Average power can be expressed in terms of the RMS voltage and current as Pave = VrmsIrms cos(θv −θi)
– Using phasors Pave = Re(VrmsI∗

rms)
• Likewise for reactive power Q = VrmsIrms sin(θv − θi)

– Using phasors Q = Im(VrmsI∗
rms)

• For an impedance, recall for Z = R+ jX, average power Pave = Re
(

(R + jX)|I|2

2

)
= 1

2RI2
m = RI2

rms

• For reactive power, Q = Im
(

(R + jX)|I|2

2

)
= 1

2XI2
m = XI2

rms

Apparent Power & Power Factor

• Active power Pave = 1
2VmIm cos(θv − θi) = VrmsIrms cos(θv − θi), can be divided into two terms, the

apparent power S = 1
2VmIm = VrmsIrms (in volt-amps), and the power factor PF = cos(θv − θi)

• Consider an impedance Z with voltage V and current I, Z = V

I
= Vm

Im
∠(θv − θi)

– Notice the power factor is the cosine of the angle of the impedance here PF = cos(∠Z)
• The power factor does not uniquely determine the impedance, since cosine is an even function, so given

only a power factor we don’t know if the angle of the impedance is positive or negative
– Define a power factor as leading if current leads voltage, i.e. θv − θi < 0, and lagging if current

lags voltage, i.e. θv − θi > 0
• For a resistor, ∠Z = 0 so the power factor is cos(0) = 1, neither lagging nor leading

– This is the only type of impedance to have a power factor of 1
• For an inductor, ∠Z = 90° so the power factor is cos(90°) = 0, and lagging since ∠Z > 0
• For a capacitor, ∠Z = −90° so the power factor is also 0, but this time leading
• For an RL circuit, Z = R + jωL so 0° < ∠Z < 90° so the power factor is between 0 and 1 lagging
• For an RC circuit, Z = R − j

ωC
and the power factor is between 0 and 1 leading

• For an RLC circuit, Z = R + j

(
ωL − 1

ωC

)
so the power factor is between 0 and 1, either leading or

lagging, depending on the relative values of the inductance and capacitance

Lecture 38, Apr 11, 2022
Complex Power

• So far all of the types of power are real numbers; complex power is the only type of power that is
complex

• The complex power for a sinusoidal AC circuit is defined as S = 1
2V I∗ = VrmsI∗

rms where V =
Vm∠θv, I = Im∠θi

– Complex power also has units of volt-amps
• We can also write complex power as S = 1

2(Vm∠θv)(Im∠ − θi) = 1
2VmIm∠(θv − θi)

– Recall the apparent power S = 1
2VmIm, so the complex power has an amplitude equal to the

apparent power
• Using Euler’s formula, in rectangular form S = VrmsIrms cos(θv − θi) + jVrmsIrms sin(θv − θi)
• Complex power is related to average/active and reactive power by S = Pave + jQ
• The power factor is the cosine of the angle of the complex power
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• Consider an impedance Z = R + jX, complex power is S = VrmsI∗
rms

= ZIrmsI∗
rms

= (R + jX)|Irms|2

= RI2
rms + jXI2

rms

= Pave + Q
• S, P and Q form a triangle in the complex plane

• Conservation of power: the algebraic sum of all the complex powers in a circuit is zero,
n∑

k=1
Sk = 0

where n is the number of circuit elements
– Since complex power has a real and imaginary component, conservation of power holds for both

average and reactive power separately

Lecture 39, Apr 12, 2022
AC Power Example

• +

−
Vs

0.05Ω

Is

j50Ω

L1

+

−
250∠0°V(rms) L2

– In the circuit above, L1 absorbs 8kW, PF = 0.8 leading; L2 absorbs 20kVA, PF = 0.6 lagging;
find the power factor of the combined load, Is, and the average power loss of the transmission line

* L1’s power draw has units of watts, which indicates that it’s an average power; L2’s power
draw is in volt-amps, indicating either apparent, instantaneous or complex power, but since
it’s a real time-independent expression it’s an apparently power
• Complex power can only be entirely real when the power factor is 1, since in that case the

angle is zero
* Note the complex power of two combined loads is simply the sum, so for part 1, we want to

find the complex power of both loads, add them and then find the angle to get the PF
* First we need the apparent power of L1 since we only have the average power:

• P1 = VrmsIrmsPF =⇒ Vrms1Irms1 = 8kW
0.8 = 10kW = S1

• Now we can find angle by θ = cos−1(0.8) = ±36.87°
• Since the power factor is leading, the angle is negative, so S1 = 10000∠ − 36.87°VA
• Now we can calculate S1 = P + jQ = 8000 + j10000 sin(−36.8°) = 8000 − j6000VA

* Do the same for L2:
• θ = cos−1(0.6) = ±53.13°, since the power factor is lagging, this is positive
• P2 = S2 · 0.6 = 12kW
• Combined S2 = 12000 + j16000VA

* Adding the two loads gives a combined complex power of 20000 + j10000VA, which has an
angle of 26.56°, giving it a power factor of 0.894 lagging

* Recall S = V I∗ =⇒ I∗
s = S

V
=⇒ Is = S∗

V ∗ = 22361∠ − 26.56°
250∠0° = 89.44∠ − 26°A

* To find the average power loss, we find the active power of the resistor and inductor (since the
inductor has only reactive power we can ignore it)
• Ploss = R|Is|2 = 0.05Ω · (89.44A)2 = 400W

Power Factor Correction
• For most practical loads, the power factors are lagging since most loads can be modelled by Z = R+jωL;

some of the power is loss through the transmission line, which is proportional to the square of the
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magnitude of the current phasor
• The more the voltage and current are out of phase, the more inefficient the power transmission is (large

magnitude of line current which leads to high loss, but low power factor for the actual load)
• By properly choosing a capacitance in parallel with the load, we can cancel or reduce the imaginary

part of Iload, putting the voltage and current more in phase and increasing transmission efficiency
(θv − θi becomes smaller, power factor becomes bigger, which is why this method is called power factor
correction)

• If the corrected power factor is 1, we call it full power factor correction; otherwise it’s a partial power
factor correction

• Example: For the previous circuit, we had a frequency of 60Hz
– We want to choose SC such that S + SC is entirely real so it has a power factor of 1

– This means for the capacitor Q = −j10000, but also for a capacitor Q = jXC |IC |2 = jXC

∣∣∣∣ V

jXC

∣∣∣∣2 =

j
|V |2

XC

– Therefore |V 2|
XC

= −10000 =⇒ XC = −6.25Ω

– From this reactance we can find the capacitance as XC = − 1
2πfC

=⇒ C = 424.4µF
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