Lecture 5, Sep 19, 2022

Driven Oscillators

- An oscillator is driven by another oscillation
- With time the frequency of the oscillator will match the driving frequency
 - Initially the movement is messy (transient response), but with time it tries to match the driver
 - There will always be a phase lag
- Maximum amplitude happens when the driving frequency matches the natural frequency of the oscillator
 - Further increasing the frequency at this point decreases the amplitude, even if the driving frequency is a multiple of the natural frequency

Undamped Forced Oscillation

• Equation of motion: $m \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + kx = F_0 \cos(\omega t)$

- Assume the spring moves according to $\xi(t) = \xi_0 \cos(\omega t)$, then $F_0 = k\xi_0$

- The solution is $x(t) = A(\omega) \cos(\omega t \delta)$
 - $-\delta$ is the phase lag
- Substituting into the equation of motion: $A(\omega)(-\omega^2 + \omega_0^2)\cos(\delta) = \omega_0^2\xi_0, A(\omega)(-\omega^2 + \omega_0^2)\sin\delta = 0$ - $\tan \delta = 0$, which gives us either $\delta = 0$ or $\delta = \pi$
 - * With no damping, the system is either perfectly in phase or perfectly out of phase with the driver

$$-A(\omega)\left(1-\frac{\omega^2}{\omega_0^2}\right)\cos\delta = \xi_0, A(\omega)\left(1-\frac{\omega^2}{\omega_0^2}\right)\sin\delta = 0$$

- If $\delta = 0$: $A(\omega) = \frac{\xi_0}{1-\frac{\omega^2}{\omega_0^2}}$ for $\omega < \omega_0$

 $1 - \frac{\omega_0^2}{\omega_0^2}$ * Response is perfectly in phase

If
$$\delta = \pi$$
: $A(\omega) = \frac{-\xi_0}{1 - \frac{\omega^2}{\omega^2}}$ for $\omega > \omega_0$

- * Response is perfectly out of phase
- For an undamped system the amplitude goes to infinity as $\omega \to \omega_0$

Damped Forced Oscillation

- $\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + \gamma \frac{\mathrm{d}x}{\mathrm{d}t} + \omega_0^2 x = \frac{F_0}{m} \cos(\omega t)$ Solution is the same $x = A(\omega) \cos(\omega t \delta)$

- Plug back in and we get $\tan \delta = \frac{\omega \gamma}{\omega_0^2 \omega^2}$

- $$\begin{split} & \omega_0^{-} \omega^2 \\ & \operatorname{As} \omega \to \omega_0, \tan \delta \to \infty \implies \delta \to \frac{\pi}{2} \\ & * \text{ In resonance the response is 90 degrees out of phase} \\ \bullet & A(\omega) = \frac{\xi_0 \omega_0^2}{\sqrt{(\omega_0^2 \omega^2)^2 + (\omega\gamma)^2}} \\ & \operatorname{Amplitude is the largest for } \omega = \omega_0, \text{ but } A(\omega) \text{ will never really go to infinity} \\ & \operatorname{For} \omega \to 0, A(\omega) \to \xi_0 = \frac{F_0}{k} \text{ (non periodic force) and } \delta \to 0 \\ & \operatorname{For} \omega \to \omega_0, A(\omega) \to \frac{\xi_0 \omega_0}{\gamma} \text{ and } \delta \to \frac{\pi}{2} \\ & \operatorname{For} \omega \to \infty, A(\omega) \to 0 \text{ and } \delta \to \pi \end{split}$$
 - For $\omega \to \infty$, $A(\omega) \to 0$ and $\delta \to \pi$
- For $\omega < \omega_0$ the oscillations are in phase, but for $\omega > \omega_0$ the oscillations become out of phase - This is normally a very sharp transition without damping, but with more damping it smoothes out
- Note when there is dampening, the maximum amplitude is not guaranteed when $\omega = \omega_0$
 - The largest amplitude happens when $\sqrt{(\omega_0^2 \omega^2) + (\omega\gamma)^2}$ is minimized

- This works out to $\omega = \omega_0 \sqrt{1 \frac{\gamma^2}{2\omega_0^2}}$
- The maximum amplitude always occurs shortly before ω_0 when there is damping

Forced Oscillation Power Absorbed

•
$$v(t) = -v_0(\omega)\sin(\omega t - \delta)$$

 $-v_0 = \frac{\xi_0 \omega_0^2 \omega}{\sqrt{(\omega_0^2 - \omega^2)^2 + \omega^2 \gamma^2}}$

- With dampening power is dissipated at a rate of bv^2
- The instantaneous power changes, so we can integrate for the average power over a period $\frac{1}{2\pi^2}$

•
$$\bar{P}(\omega) = \frac{bv^2}{2} = \frac{\omega^2 F_0^2 \gamma}{2m \left((\omega_0^2 - \omega^2)^2 + \gamma^2 \omega^2\right)}$$

- Note $\omega \to 0$ or $\omega \to \infty, \bar{P} \to 0$