Lecture 31 (2-15), Nov 29, 2022

Length Contraction

- Consider reference frames s and s' moving with velocity v in the x direction; we try to measure the length l of a train car in s'
- If we want to do this in s, we can take the time when the start of the train passes the observer, and another time when the end passes the observer
 - This gives us a Δt and $l = v \Delta t$
- In $s', l' = v\Delta t'$
- In this case Δt is proper time so $\Delta t' = \gamma \Delta t \implies l' = \frac{l}{\Delta t} \Delta t' = \gamma l \implies l = \frac{l'}{\gamma}$
- The proper length is length as measured in a resting reference frame; in this case l' is the proper length

 The observed length l is shorter, by a factor of ¹/₂
- $l = \frac{l_0}{\gamma}$ where l_0 is the proper length (length measured in the rest frame) and l is the length as observed from a moving frame

Lorentz Transformation

- The relativistic version of the Galilean transformation that addresses time dilation and length contraction – Connects $(x, y, z, t) \leftrightarrow (x', y', z', t')$
- Consider motion only in the x direction, between reference frames s and s' with constant velocity v
- Consider an even in s^\prime with coordinates (x^\prime,t^\prime)
 - In the s frame x = x' + vt under Galilean transformation, but x' should be length contracted so $x = \frac{x'}{x} + vt$

• The complete transformation: $\begin{cases} y' = y \\ z' = z \end{cases}$

$$\begin{cases} z = z \\ t' = \gamma \left(t - \frac{v}{c^2} x \right) \end{cases}$$

$$-\begin{cases} x = \gamma(x' + vt') \\ y = y' \\ z = z' \\ t = \gamma \left(t' + \frac{v}{c^2}x\right) \end{cases}$$

- What about velocity transformations?
 - Consider a particle with velocity u'_x, u'_y in s', what is \vec{u} , as measured from s?
 - $-u_x = \frac{\Delta x}{\Delta t} \text{ and from the Lorentz transformation } \frac{\Delta x}{\Delta t} = \frac{\gamma(\Delta x + v\Delta t')}{\gamma\left(\Delta t' + \frac{v}{c^2}\Delta x'\right)} = \frac{\frac{\Delta x'}{\Delta t'} + v}{1 + \frac{v}{c^2}\frac{\Delta x'}{\Delta t'}} = \frac{u'_x + v}{1 + \frac{v}{c^2}\frac{\Delta x'}{\Delta t'}} = \frac{u'_x + v}{1 + \frac{v}{c^2}\frac{\Delta x'}{\Delta t'}}$ - Similarly $u_y = \frac{\Delta y}{\Delta t} = \frac{\Delta y'}{\gamma\left(\Delta t' + \frac{v}{c^2}\Delta x'\right)} = \frac{u'_y}{\gamma\left(1 + \frac{v}{c^2}u'_x\right)}$