Lecture 27 (2-11), Nov 21, 2022

Quantum Tunneling

- In classical mechanics, when a particle reaches a potential barrier greater than its energy, it will stop and turn back
- In the quantum case, because the wavefunction doesn't decay instantaneously, the particle have a finite probability to pass through a potential barrier
- This is known as *quantum tunneling*
- Conversely, in quantum mechanics even when the particle has enough energy to overcome a barrier, there is a finite probability that the particle is reflected instead

Potential Step

- Consider potential $V(x) = \begin{cases} 0 & x < 0 \\ V_0 & x \ge 0 \end{cases}$
- Strategy: break up the potential into two regions, separately solve TISE, then match boundary conditions - In this case we have continuity of $\psi(x)$ as well as $\psi'(x)$
 - A discontinuity in V(x) leads to a discontinuity of $\frac{d^2\psi}{dx^2}$, but if V(x) is finite, then $\frac{d\psi}{dx}$ will still be continuous

* This is why we need to consider ψ' in this case, but not in the case of the infinite square well. because here V(x) is finite but it's not in the infinite square well

• In the first region
$$x < 0 \implies \frac{d^2\psi}{dx^2} + \frac{2mE}{\hbar^2}\psi = 0 \implies \frac{d^2\psi}{dx^2} + k^2\psi = 0 \implies \psi_I(x) = Ae^{ikx} + Be^{-ikx}$$

- In the second region $x > 0 \implies \frac{d^2\psi}{dx^2} + \frac{2m}{\hbar^2} (E V_0) \psi = 0$ Define $\alpha^2 = \frac{2m}{\hbar^2} (V_0 E) \psi \implies \frac{d^2\psi}{dx^2} \alpha^2 \psi = 0$ * Note this is because we're considering when $E < V_0$
 - This gives $\psi_{II}(x) = Ce^{\alpha x} + De^{-\alpha x}$
- We know C = 0 otherwise ψ_{II} is not square integrable
- Matching initial conditions:

$$-\psi_I(0) = \psi_{II}(0) \implies A + B = D$$

$$-\psi'_{I}(0) = \psi'_{II}(0) \implies Aik - Bik = -\alpha$$

 $- \psi'_{I}(0) = \psi'_{II}(0) \implies Aik - Bik = -\alpha D$ • For now we're interested in the ratios $\frac{B}{A}$ and $\frac{D}{A}$

$$-1 + \frac{B}{A} = \frac{D}{A}$$

$$-1 - \frac{B}{A} = -\frac{\alpha}{ik}\frac{D}{A}$$

$$-2 = \left(1 - \frac{\alpha}{ik}\right)\frac{D}{A}$$

$$-\left(1 + \frac{\alpha}{ik}\right) + \frac{B}{A}\left(1 - \frac{\alpha}{ik}\right) = 0$$

$$-\frac{B}{A} = \frac{1 - \frac{i\alpha}{k}}{1 + \frac{i\alpha}{k}}$$

$$-\frac{D}{A} = \frac{2}{1 + \frac{i\alpha}{k}}$$

$$- \text{Note } \frac{\alpha}{ik} = \sqrt{\frac{V_0 - E}{k}}, \text{ so we can}$$

determine these by the ratio of the energies

- Note physically A is the wave coming in, B is the reflected wave, and D is the transmitted wave in the classically forbidden region
- Define the reflection coefficient $R = \frac{|B|^2}{|A|^2} = \left|\frac{B}{A}\right|^2 = \frac{1+i\frac{\alpha}{k}}{1-i\frac{\alpha}{k}}\frac{1-i\frac{\alpha}{k}}{1+i\frac{\alpha}{r}} = 1$

- This means we have total reflection; even though when the reflection happens there's a finite probability of the particle in the forbidden region, eventually everything is reflected in the end