Lecture 25 (2-9), Nov 15, 2022

Copenhagen Interpretation Revisited

- The energy of a system is indeterminate until the measurement
- Before the measurement, the wavefunction is a superposition of many eigenstates (e.g. $\psi_1, \psi_2, \psi_3, \cdots$)
- Measurements of the total energy will give the expectation value of \hat{H}
 - Each individual measurement will only give you E_1, E_2, \cdots in quantized levels, but the probabilities of each energy makes it so that on average you measure the expectation value
- When the measurement happens, the wavefunction collapses to a certain eigenstate

ψ_n Form an Orthonormal Basis

- Orthonormality of ψ_n :
 - Define the inner product as $\int \psi_n^* \psi_m \, \mathrm{d}x$
 - Orthonormality means that $\int \psi_n^* \psi_m \, \mathrm{d}x = \delta_{mn}$ where δ_{mn} is the Kronecker delta
 - * When n = m since ψ is normalized this is trivially true

* Consider the infinite square well, then
$$\int \psi_n^* \psi_m \, \mathrm{d}x = \frac{2}{a} \int_0^a \sin\left(\frac{n\pi x}{a}\right) \sin\left(\frac{m\pi x}{a}\right) \, \mathrm{d}x = \delta_{mn}$$

- Completeness:
 - Any arbitrary function can be expressed as some linear combination of ψ_n

$$- f(x) = \sum_{n=1}^{\infty} c_n \psi_n$$

- For the infinite square well, this is $\sqrt{\frac{2}{a}} \sum_{n=1}^{\infty} c_n \sin\left(\frac{n\pi x}{a}\right)$

 $\ast\,$ This is a Fourier series, so this proves completeness

• Using these, we can show
$$\int \psi_m^* f(x) \, dx = \sum_{n=1}^{\infty} c_n \int \psi_m^* \psi_n \, dx = \sum_{n=1}^{\infty} \delta_{mn} = c_m$$

Interpretation of c_n

•
$$\langle \hat{H} \rangle = \sum_{n=1}^{\infty} |c_n|^2 E_n$$

• $|c_n|^2$ is the "weight" of each energy