Lecture 24 (2-8), Nov 14, 2022

Infinite Square Well (1D)

- Bound state, localized in Δx
- $V(x) = \begin{cases} 0 & 0 \le x \le a \\ \infty & \text{otherwise} \end{cases}$

- The particle cannot be outside (0, a) since the potential is infinite there

- Outside the well, $\psi = 0$ is the only thing that can satisfy the SE
- Inside the well: $\hat{H}\psi = E\psi \implies -\frac{\hbar^2}{2m}\frac{\mathrm{d}^2}{\mathrm{d}x^2}\psi = E\psi$ $\frac{\mathrm{d}^2\psi}{\mathrm{d}x^2} + \frac{2mE}{\hbar^2}\psi = 0$
- * When E < 0: Let $\alpha^2 = -\frac{2mE}{\hbar^2} \implies \frac{d^2\psi}{dx^2} \alpha^2\psi = 0 \implies \psi(x) = Ae^{\alpha x} + Be^{-\alpha x}$ * When E > 0: Let $k^2 = \frac{2mE}{\hbar^2} \implies \frac{d^2\psi}{dx^2} + k^2\psi = 0 \implies \psi(x) = A\sin(kx) + B\cos(kx)$ Enforce continuity conditions: $\psi(x) = 0$ for x < 0 or x > a $-\psi(0) = 0 \implies R 0$
 - $-\psi(0) = 0 \implies B = 0$

$$-\psi(a) = 0 \implies A\sin(ka) = 0 \implies ka = n\pi \implies k = \frac{n\pi}{a}$$

* Assume A is nonzero because that leads to a non-normalizable solution - This gives $E_n = \frac{\hbar^2 k_n^2}{2m} = \frac{\hbar^2 \pi^2 n^2}{2ma^2}$ - Note we're not considering continuity of the derivative here because our potential is infinite

• Normalization condition:
$$\int_{-\infty}^{\infty} |\psi|^2 dx = 1 \implies A = \sqrt{\frac{2}{a}}$$

- $\psi_n(x) = A\sin(k_n x) = A\sin\left(\frac{n\pi}{a}x\right) = \sqrt{\frac{2}{a}}\sin\left(\frac{n\pi x}{a}\right)$
- There are an infinite number of allowed solutions; n = 1 is the lowest energy state (ground state) - Notice it's not at zero energy! This lowest energy level is the zero-point energy
- The full solution is $\Psi_n(x,t) = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi x}{a}\right) e^{-\frac{i\hbar\pi^2 n^2}{2ma^2}t}$

– The most general solution is a sum of all of these: $\Psi(x,t) = \sum_{n=1}^{\infty} C_n \Psi_n(x,t)$

- In general $\Psi(x,t)$ is not a stationary state

Uncertainty Principle

- Physically, why can't we have n = 0?
- Physically $E = 0 \implies p = 0 \implies \Delta p = 0$, so there is no uncertainty in momentum; this would mean $\Delta x \Delta p = 0$, violating the uncertainty principle
- What about n = 1?
 - $-\Delta x$ is at most a since the particle is never outside the box
 - Δp can be estimated as $2\sqrt{2mE} = 2\frac{\pi\hbar}{4}$

* $p = \sqrt{2mE}$ is incorrect; energy is a vector and momentum is a scalar

- In 1D this means we have $p = \pm \sqrt{2mE}$
- $-\Delta x \Delta p = 2\pi\hbar$