Lecture 2, Sep 12, 2022

Simple Harmonic Motion

- Periodic motion about an equilibrium, caused by a restoring force
 - Can think of it as the 1D projection of circular motion
- $\vec{F} = -k\Delta \vec{x}$
 - The restoring force is conservative (gradient of a scalar field potential)
- SHM exhibits a sinusoidal pattern
- Applicable to many scenarios:

- Mass on spring, rigid beams, crystals, chemical bonds, etc

- To get the DE: $F_x = -kx \implies -kx = ma_x \implies -kx = m\frac{d^2x}{dt^2} \implies \frac{d^2x}{dt^2} + \frac{k}{m}x = 0$ Let $\omega^2 = \frac{k}{m}$ to restrict it to positive, so $\frac{d^2x}{dt^2} + \omega^2 x = 0$

Important

The general solution for SHM is $x(t) = X_0 + A\cos(\omega t + \phi_0)$, where:

• X_0 is an offset for the position at equilibrium

•
$$\omega = \sqrt{\frac{k}{m}}$$

- Two constants to match initial conditions: A is the amplitude, ϕ_0 is the phase
- ω is the angular frequency in radians per second

$$\omega = 2\pi f = \frac{2\pi}{T}$$

- Can also write $x(t) = A \cos\left(2\pi \frac{t}{T} + \phi_0\right)$ in terms of the period instead of angular frequency
- Velocity is $v(t) = -A\omega\sin(\omega t + \phi_0)$ - Max speed $v_{max} = A\omega$, occurs near equilibrium (centre of oscillation)
- Acceleration is $a(t) = -A\omega^2 \cos(\omega t + \phi_0)$
 - Max acceleration $a_{max} = A\omega^2$, occurs near boundary of oscillation
 - Note this is also equal to $-\omega^2 x(t)$ which matches our equation of motion
- Alternative form: $x(t) = A\cos(\omega t + \phi_0) = A\cos(\omega t)\cos(\phi_0) A\sin(\omega t)\sin(\phi_0)$
 - Since $A\cos(\phi_0)$, $A\sin(\phi_0)$ are constants, $x(t) = a\cos(\omega t) + b\sin(\omega t)$

Important

The general solution can also be expressed as a sum of a sine and cosine: $x(t) = a \cos \omega t + b \sin \omega t$, where $a = A\cos(\phi_0), b = -A\sin(\phi_0)$

• Notice $a = A\cos(\phi_0)$ is simply x(0), the initial position, and $b\omega = -A\omega\sin(\phi_0) = v(0)$

• Notice:
$$a^2 + b^2 = A^2(\cos^2\phi_0 + \sin^2\phi_0) = A^2$$
 and $\frac{b}{a} = -\tan\phi_0$

Note

The coefficients a and b of the sine and cosine are components of the oscillation's phasor $\mathbf{Z} = a - bi$