Lecture 19 (2-3), Oct 25, 2022

Photoelectric Effect

- Ultraviolet light causes metals to release electrons; electron energy does not depend on light intensity, but increases with frequency
 - The dependence of electron energy on frequency is unknown
- Einstein proposed the quantization of light, from Planck: $E_{max} = \frac{1}{2}mv_{max}^2 = hf \phi$
 - This predicts that $E_{max} = eV_0$ is linear in f, with slope of h
 - These predictions were confirmed by Millikan
- Einstein quantized light in *photons*, but nobody accepted it at first even after the Millikan experiment

Compton's Experiment

- This is the experiment that made physicists accept photons
- Investigates what happens when light is shined at electrons •
- In the classical picture, since light is the oscillation of an electric field, an electron will oscillate inside this field as light passes through; this oscillating charge will radiate out light at the same frequency
 - This is Thompson Scattering, where $\lambda = \lambda'$
- In the quantum picture, since light is a particle, when the photon collides with the electron both the photon and electron will change course based like in a classical collision experiment
 - Collision can be elastic or inelastic, i.e. λ of the photon can change to λ' as it loses energy, which is gained by the electron
- This is Compton Scattering, when $\lambda \neq \lambda'$ is possible $E = hf \implies p = \frac{E}{c} = \frac{hf}{c} = \frac{h}{\lambda}$
- - Consider photon coming in with $E_0, \vec{p_0}$ hitting an electron with rest energy mc^2
 - The electron goes out with \vec{p}_2 , photon goes out with (E_0, \vec{p}_1) , with angle change θ
 - Momentum and energy conservation: $\vec{p}_0 = \vec{p}_1 + \vec{p}_2, E_0 + mc^2 = E_1 + \sqrt{(mc^2)^2 + (\vec{p}_2 c)^2}$ * $\sqrt{(mc^2)^2 + (\vec{p}_2 c)^2}$ is the relativistic electron energy (don't worry about this right now)

This gives
$$\lambda_0 - \lambda_1 = \frac{h}{mc}(1 - \cos\theta)$$

- * $\frac{h}{mc}$ is a length scale, referred to as the *Compton wavelength*, 0.0242Å * Since this change is very small, to notice the change we need to start with a very small λ_0 , so X-rays are used
- Results from Compton's experiment confirmed the quantum picture, which made people accept the existence of photons