Lecture 16, Oct 18, 2022

Superposition of Waves

- Monochromatic waves have only one wavelength/frequency
- Waves can be superimposed
- Superimposing two waves creates beat phenomena
 - The wave is a multiplication of the two waves
 - The first wave has the average wave number and frequency
 - The second wave has $\frac{1}{2}(k_2-k_1)$ and $\frac{1}{2}(\omega_2-\omega_1)$
- The higher frequency makes the carrier frequency in the beat; the lower frequency makes the modulating frequency

- The beat frequency is $\frac{1}{2}|\omega_2 - \omega_1|$

Important

•

Although the beat frequency has $\omega = \frac{1}{2}(\omega_2 - \omega_1)$, the frequency we hear is effectively twice this amount, at $\omega_2 - \omega_1$

Dispersion

- What happens when not all the waves travel with the same frequency?
- In dispersive media, v and ω are functions of k, and wave speed depends on frequency
- A pulse, made of a superposition of waves, spreads out as it travels as the different components travel at different speeds
- The relation $\omega(k)$ is the dispersion relation
- This can be seen in e.g. prisms where in a dispersive medium, the refractive index for different wavelengths is different
- Phase velocity is defined as $v = \frac{\omega_0}{k_0}$, the ratio of the average frequency and wave number
 - The phase velocity is how fast a disturbance travels
 - The velocity of the carrier wave

• Group velocity is defined as
$$v_g = \frac{\Delta \omega}{\Delta k} = \frac{\omega(k_2) - \omega(k_1)}{k_2 - k_1}$$

- The group velocity is how fast the envelope travels
- The velocity of the modulating wave

$$v_g = \frac{\mathrm{d}\omega}{\mathrm{d}k} \bigg|_{k=k_0}$$
$$- v_g = v - \lambda \frac{\mathrm{d}v}{\mathrm{d}\lambda}$$