Lecture 13, Oct 6, 2022

Energy of a Wave

- The wave's energy consists of both kinetic and potential energy
 - The potential energy comes from the bending of the string against tension
 - If the string has linear mass density μ and tension τ and a small segment has unstretched (i.e. horizontal) length dx, extended length ds

$$- \mathrm{d}K = \frac{1}{2}\mu \mathrm{d}x \left(\frac{\partial y}{\partial t}\right)^2$$

- Potential energy derivation is much more ugly but $dU = \frac{1}{2}\tau dx \left(\frac{\partial y}{\partial x}\right)^2$
- Let's analyze the energy of the *n*th mode: using $y_n(x,t) = A_n \sin\left(\frac{n\pi}{L}x\right) \cos(\omega_n t)$ and integrate over the length of the string
- Total energy is $E = \frac{1}{4}\mu\omega_n^2 A_n^2 L$ Notice, μL is mass, and $A_n\omega_n$ is velocity of the oscillation The $\frac{1}{4}$ is due to averaging

 - Note $\omega_n = \frac{n\pi v}{L}$ so ω_n^2 is proportional to n^2
- If we integrate to one wavelength $E = \frac{1}{2}\mu\omega_n^2 A_n^2 \frac{L}{n} = \frac{1}{4}\mu\omega_n^2 A_n^2 \lambda_n$
- The power is $P = \frac{E_n}{T} = \frac{1}{4}\mu\omega_n^2 A_n^2 v$ Recall $\mu v = Z$ is the impedance

Reflected Power

- The incident wave has power Z₁A_i²ω²
 Reflected wave has Z₁A_r²ω² = Z₁A_i²Rω²
 The average transmitted power is Z₂A_t²ω² = Z₂(A_iT)²ω²
 The reflected power ratio is then ^{Z₁A_i²Rω²}/_{Z₁A_i²ω²} R², sometimes defined as R_e
- The transmitted power ratio is then $T_e = \frac{Z_2}{Z_1}T^2$, not T^2 !
- If we add $R^2 + \frac{Z_2}{Z_1}T^2$ we get 1, which shows conservation of energy - Therefore we can also define energy transmission coefficient as $T_e = 1 - R_e$

Summary

Recall the amplitude reflection and transmission coefficients $R \equiv \frac{A_r}{A_i}, T \equiv \frac{A_t}{A_i}$ where

$$R = \frac{Z_1 - Z_2}{Z_1 + Z_2}, T = \frac{2Z_1}{Z_1 + Z_2}$$

The power reflection and transmission coefficients are

$$R_e \equiv \frac{P_r}{P_i} = R^2, T_e = \frac{P_t}{P_i} = \frac{Z_2}{Z_1}T^2$$

related by $T_e + R_e = 1$