Lecture 12, Oct 4, 2022

Fourier Analysis of Standing Waves

- A solution for standing waves follows $\omega_n = \frac{n\pi v}{L}$ (identical boundaries) or $\omega_n = \frac{n\pi v}{2L}$ (mixed boundaries, odd n only)
 - Boundary at x = 0 determines the type of spacial function (sin or cos)
 - Boundary at x = L determines the allowed modes
 - The displacement is described by $y(x,t) = (A_n \sin(k_n x) + B_n \cos(k_n x)) \cos(\omega_n t)$
- Superposition principle: adding two waves together still gives us another wave
 - This means $Y(x,t) = \sum_{n} \cos(\omega_n t) (A_n \sin(k_n x) + B_n \cos(k_n x))$, the superposition of all standing waves, is a valid wave
 - Let's use only sines, then in general $y(x,t) = \sum A_n \sin\left(\frac{n\pi}{L}x\right) \cos(\omega_n t)$
- Any initial shape of the string $y(x,0) = \sum A_n \sin\left(\frac{n\pi}{L}x\right) = f(x)$ can be written as such a superposition; to determine the actual values of A_n we need, we can apply Fourier analysis
- Notice the properties:

$$-\int_{0}^{L} \sin^{2}\left(\frac{n\pi}{L}x\right) dx = \frac{L}{2}$$
$$-\int_{0}^{L} \sin\left(\frac{n\pi}{L}x\right) \sin\left(\frac{m\pi}{L}x\right) dx = \begin{cases} 0 & m \neq n \\ 1 & m = n \end{cases}$$

• Then we can multiply both sides of the superposition by $\sin\left(\frac{m\pi}{L}x\right)$ and integrate, to get

$$\int_0^L f(x) \sin\left(\frac{n\pi}{L}x\right) \, \mathrm{d}x = \int_0^L \sum_n \sin\left(\frac{n\pi}{L}x\right) \sin\left(\frac{m\pi}{L}x\right) \, \mathrm{d}x = A_n \frac{L}{2}$$

Important

The coefficients A_n for the Fourier series

$$\sum A_n \sin\left(\frac{n\pi}{L}x\right)$$

can be obtained by

$$A_n = \frac{2}{L} \int_0^L f(x) \sin\left(\frac{n\pi}{L}x\right) \,\mathrm{d}x$$

Where:

- 1. n is the mode number
- 2. A_n is the coefficient, or the amplitude of the *n*th mode
- 3. L is the length of the string
- 4. f(x) is the function describing the standing wave pattern observed

Note the integral is over the whole system, so the bounds may change depending on the setup of the system