Lecture 7, Sep 22, 2022

Logistic Growth

- Simple growth model of $\frac{dy}{dt} = rt$ is unrealistic, as at some point the population needs to stop growing due to lack of resources
- Growth rate depending on population: $\frac{dy}{dt} = h(y)y$
 - Growth rate h(y) = r ay
 - If y is small, then h(y) > 0 and the population grows
 - If y is large, then h(y) < 0 and the population dies off due to lack of resources
- This leads to the logistic equation (Verhulst equation): $\frac{\mathrm{d}y}{\mathrm{d}t} = (r ay)y$
 - Equivalently $\frac{dy}{dt} = r\left(1 \frac{y}{K}\right)y, K = \frac{r}{a}$ This is a first-order autonomous nonlinear ODE
- r is the intrinsic carrying capacity
- K is the saturation level, or environmental carrying capacity

Important

Logistic growth model:

$$\frac{\mathrm{d}y}{\mathrm{d}t} = r\left(1 - \frac{y}{K}\right)y$$

where $K = \frac{r}{a}$; solved by

$$y = \frac{y_0 K}{y_0 + (K - y_0)e^{-rt}}$$

assuming $y_0 < K$

Figure 1: Solutions to the logistic model

- The line y = K is a stable equilibrium
- $\frac{K}{2}$ is an inflection point, where the population curve goes from concave up to concave down - Rate of population growth begins to slow down

• The solution is $y = \frac{y_0 K}{y_0 + (K - y_0)e^{-rt}}$, assuming $y_0 < K$

Growth With a Threshold

• If the initial population is too low, they might all die out before the population can grow

Figure 2: Solutions to the growth with a threshold model

- If $y_0 > T$ then the population keeps growing; if $y_0 < T$ then the population shrinks until everyone dies out
- $y_0 = T$ is an unstable equilibrium Solution: $y = \frac{y_0 T}{y_0 + (T y_0)e^{rt}}$

Logistic Growth With a Threshold

• Combine the two models: $\frac{\mathrm{d}y}{\mathrm{d}t} = -r\left(1 - \frac{y}{T}\right)\left(1 - \frac{y}{K}\right)y$

Figure 3: Solutions to the logistic growth with a threshold model