Lecture 5, Sep 16, 2022

Rocket Science

- Consider Earth with radius R, rocket with mass m at height x with velocity v, and gravitational acceleration g
- Given $ma = F, v(0) = v_0$ as the initial rocket velocity
 - The force of gravity is $\frac{mgR^2}{(R+x)^2}$, since for $x=0 \implies \frac{mgR^2}{R^2} = mg$ is the gravitational force on the Earth's surface
 - This gives $ma = F = -\frac{mgR^2}{(R+x)^2}$ (since gravity works in the negative direction)
- The equation of motion is $\frac{dv}{dt} = \frac{gR^2}{(R+x)^2}$ Applying the chain rule: $\frac{dv}{dt} = \frac{dv}{dx}\frac{dx}{dt} = \frac{dv}{dx}v$ Using this we can eliminate t

 - Note by doing this we get a first order ODE, whereas making $a = \frac{d^2x}{dt^2}$ gives us a second order ODE

•
$$v \frac{\mathrm{d}v}{\mathrm{d}x} = -\frac{gR^2}{(R+x)^2}, v(0) = v_0$$

- Note here $v(0) = v_0$ means the velocity at position 0 instead of time 0

 $v\frac{\mathrm{d}v}{\mathrm{d}x} = -\frac{gR^2}{(R+x)^2}$ • Solution: $\implies \frac{1}{2}v^2 = \frac{gR^2}{R+x} + C$ $\implies v(x) = \pm \sqrt{\frac{2gR^2}{R+x} + C}$ $- v(0) = v_0 \implies \sqrt{2gR + C} = v_0 \implies C = v_0^2 - 2gR$ - Final solution: $v = \pm \sqrt{\frac{2gR^2}{R+x} + v_0^2 - 2gR}$ • What is the maximum altitude x_{max} reached? - $v(x_{max}) = 0 \implies \frac{2gR^2}{R+x} + v_0^2 = 2aR \implies$

What is the maximum altitude
$$x_{max}$$
 reached?
 $-v(x_{max}) = 0 \implies \frac{2gR^2}{R+x} + v_0^2 = 2gR \implies x_{max} = \frac{v_0^2R}{2gR - v_0^2}$
Given x_{max} , what v_0 do we need?

• Given x_{max} , what v_0 do we need?

$$-v_0 = \sqrt{2gR\frac{x_{max}}{R+x_{max}}}$$

• The escape velocity is then $\lim_{x_{max}\to\infty} v_0 = \sqrt{2gR}$