Lecture 4, Sep 15, 2022

Method of Integrating Factors

- Consider a first order linear ODE: $\frac{du}{dt} + p(t)u = g(t)$:
 - Assume we have a function $\mu(t)$ such that $\mu(t)p(t) = \frac{\mathrm{d}\mu}{\mathrm{d}t}$
 - Multiply by μ : $\mu(t)\frac{\mathrm{d}u}{\mathrm{d}t} + \mu(t)p(t)u = \mu(t)\frac{\mathrm{d}u}{\mathrm{d}t} + \frac{\mathrm{d}\mu}{\mathrm{d}t}u = \mu(t)g(t)$

 - $-\frac{\mathrm{d}}{\mathrm{d}t}(\mu u) = \mu(t)g(t) \implies u = \frac{\int \mu(t)g(t)\,\mathrm{d}t}{\mu(t)}$ $-\text{Choose } \mu: \frac{\mathrm{d}\mu}{\mathrm{d}t} = \mu(t)p(t) \implies \frac{1}{\mu}\frac{\mathrm{d}\mu}{\mathrm{d}t} = \mu(t)p(t) \implies \mu(t) = e^{\int p(t)\,\mathrm{d}t}$

Important

Method of integrating factors: The solution to $\frac{\mathrm{d}u}{\mathrm{d}t} + p(t)u = g(t)$ is $u(t) = \frac{1}{\mu} \left(\int \mu(t)g(t) \, \mathrm{d}t + C \right)$, where the integrating factor $\mu(t) = \exp\left(\int p(t) dt\right)$

Example

- Example: $u' = -k(u T_0 A\sin(\omega t))$
 - The $A\sin(\omega T)$ term represents seasonal temperature variations
 - Put in standard form: $u' + ku = kT_0 + kA\sin(\omega t)$
 - Calculate integrating factor: $\mu = \exp\left(\int k \, dt\right) = e^{kt}$
 - General solution: $u(t) = \frac{1}{e^{kt}} \left(\int e^{ks} (kT_0 + kA\sin(\omega s)) ds + C \right)$ $= T_0 + \frac{1}{e^{kt}} \left(\int e^{ks} kA \sin(\omega s) \, \mathrm{d}s \right) + C \frac{1}{e^{kt}}$ $= T_0 + \frac{kA}{k^2 + \omega^2} (k\sin(\omega t) - \omega\cos(\omega t)) + C\frac{1}{e^{kt}}$

Figure 1: Solution curves

- Notice all solutions converge to a single solution $u(t) = T_0 + \frac{kA}{k^2 + \omega^2}(k\sin(\omega t) \omega\cos(\omega t))$ The dominant term is completely independent of initial condition C• However, this is not an equilibrium because $\frac{\mathrm{d}u}{\mathrm{d}t} \neq 0$