Lecture 31, Dec 1, 2022

Example

- System: y'' + 2y' + 5y = g(t)• Transfer function: $H(s) = \frac{1}{s^2 + 2s + 5} = \frac{1}{(s+1)^2 + 4}$
- Impulse response: $h(s) = \mathcal{L}^{-1} \{H(s)\} = \frac{1}{2} e^{-t} \sin(2t)$
- Homogeneous solution: $\lambda = -1 \pm 2i \implies^2 y_g(t) = e^{-t}(c_1 \cos(2t) + c_2 \sin(2t))$
- Particular solution (forced response): $h * g = \int_0^t \frac{1}{2} e^{-(t-\tau)} \sin(2(t-\tau))g(\tau) d\tau$

• General solution:
$$y(t) = c_1 e^{-t} \cos(2t) + c_2 e^{-t} \sin(2t) + \int_0^t \frac{1}{2} e^{-(t-\tau)} \sin(2(t-\tau))g(\tau) \,\mathrm{d}\tau$$

Partial Differential Equations (PDEs)

• Examples:

- Heat equation
$$\frac{\partial u}{\partial t} = D\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right)$$

* Heat dispersing in an object
- Wave equation: $\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$
- Laplace equation: $\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} = 0$

- PDEs have more than one variable, whereas ODEs only have one variable x or t
- Consider 1D heat conduction along a cylinder, with temperature u(x,t)
- PDE: $u_t = a^2 u_{xx}$, for 0 < x < L, t > 0
 - $-\alpha$ is the thermal diffusivity
 - Intuition: Points that are more "concentrated" in heat will have that heat spread out faster
 - Initial conditions: $u(x,0) = f(x), 0 \le x \le L$
 - * Initial temperature distribution
 - Boundary conditions: u(0,t) = 0, u(L,t) = 0, t > 0
 - * Temperature at both ends of the rod is zero
- How would we approach something like this?
- Separation of variables: guess solution u(x,t) = X(t)T(t)

 - Substitution into ODE: $\frac{X''}{x} = \frac{1}{\alpha^2} \frac{T'}{T}$ Notice the left hand side is only a function of x while the right hand side is only a function of t, so for both to equal each other for all x and t, both must be constants
 - $-\frac{X''}{X} = \frac{1}{\alpha^2} \frac{T'}{T} = -\lambda$

- This gives us two ODEs:
$$\begin{cases} X'' + \lambda X = 0\\ T' + \alpha^2 \lambda T = 0 \end{cases}$$