Lecture 30, Nov 28, 2022

Convolutions

Definition

The convolution of two functions f(t) and g(t) is

$$(f * g)(t) = \int_0^t f(t - \tau)g(\tau) \,\mathrm{d}\tau$$

The discrete version for two sequences f[n] and q[n] is

$$(f * g)[n] = \sum_{m = -\infty}^{\infty} f[m]g[n - m]$$

- Taking one function, flipping it around, shifting it by some amount, and seeing how much the two functions correlate
- Properties:
 - Commutativity: f * g = g * f
 - Distributivity: $f * (g_1 + g_2) = f * g_1 + f * g_2$
 - Associativity: (f * g) * h = f * (g * h)
 - Zero: f * 0 = 0 * f = 0
- Convolution in time domain is multiplication in s domain: $\mathcal{L}{f*q} = \mathcal{L}{f}\mathcal{L}{q}$ (Convolution Theorem)
 - This also holds for the Fourier transform
 - Now if we have to take the inverse Laplace transform of some product, we can just use a convolution!

Input-Output Problem

- Consider the ODE $ay'' + by' + cy = g(t), y(0) = y_0, y'(0) = y_1$ Laplace transform: $(as^2 + bs + c)Y(s) (as + b)y_0 ay_1 = G(s)$ $Y(s) = \frac{(as + b)y_0 + ay_1 + G(s)}{as^2 + bs + c}$ Let $H(s) = \frac{1}{as^2 + bs + c}$ be the transfer function of this system $Y(s) = H(s)((as + b)y_0 + ay_1) + H(s)G(s)$
- We get the solution $y(t) = \mathcal{L}^{-1} \{H(s)((as+b)y_0 + ay_1))\} + \int_0^t h(t-\tau)g(\tau) d\tau$
 - The first part of this, $\mathcal{L}^{-1} \{ H(s)((as+b)y_0 + ay_1)) \}$, is the free response
 - * This is the response of the system to the initial conditions y(0) and y'(0) only, disregarding the forcing function
 - * This can be thought of as the solution to the homogeneous system
 - The second part, $\int_0^t h(t-\tau)g(\tau) d\tau$, is the *forced response* * This is the response of the system to g(t) only, without any initial conditions (i.e. y(0) =
 - y'(0) = 0
 - * This can be thought of as a particular solution to the non-homogeneous system
 - Combining the two we get the total response y(t)
- Note the forced response is H(s)G(s); if we take $g(t) = \delta(t)$, then $H(s)G(s) = H(s)\mathcal{L}\{\delta(t)\} = H(s)$
 - The transfer function H(s) is simply the impulse response of $ay'' + by' + cy = \delta(t), y(0) = 0, y'(0) = 0$ - Knowing the impulse response of the system allows us to easily determine the forced response