Lecture 23, Oct 31, 2022

The Laplace Transform

The Laplace transform of a function f(t) is
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e The Laplace transform is analogous to a change of coordinates in linear algebra
— We're taking a function f(¢) to get back another function F'(s)
— This integral of the product of functions is akin to a dot product, but for functions; e~
* We like a basis of e~*! because its derivative is proportional to itself
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Example Transforms
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e In reality we just look these up from a table



Linearity of the Laplace Transform

The Laplace transform is linear:

L{cifi(t) +eafa(t)} =1 L{fi(t)} + caL{f2(t)}

If L{f1} exists for ¢t > s; and L{f2} exists for ¢ > so then the linear combination exists for
t > max(s1, S2)
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