Lecture 21, Oct 27, 2022

Second Order Linear Nonhomogeneous ODEs

- Recall: All solutions to Ax = b can be constructed by taking a particular solution to it and adding a solution to Ax = 0
- Consider a nonhomogeneous second order linear ODE ay'' + by' + cy = q(t) and its homogeneous ٠ counterpart ay'' + by + cy = 0
- 2 observations:
 - 1. Let y_h be a solution to the homogeneous ODE and y_p be a particular solution to the nonhomogeneous ODE, then $y_h + y_p$ solves the nonhomogeneous ODE
 - 2. Let y_p, \hat{y}_p be two particular solutions to the nonhomogeneous ODE, then $\hat{y}_p y_p = y_h$ solves the homogeneous ODE
- This means that given a nonhomogeneous ODE, we simply have to find a particular solution to it y_p , and the general solution y_h to the homogeneous ODE; then the general solution to the nonhomogeneous ODE is the sum of the two

Important

Given

$$ay'' + by' + cy = g(t)$$

the general solution can be found by

$$y_g = y_h + y_p$$

where y_h is the general solution to the homogeneous ODE ay'' + by + cy = 0 and y_p is one particular solution to the homogeneous ODE

Method of Undetermined Coefficients

- Involves guessing "trial solutions" based on the form of q(t)
 - For e^{rt} we guess Ae^{rt}
 - For $\sin(\omega t)$ or $\cos(\omega t)$ we guess $A\sin(\omega t) + B\cos(\omega t)$
 - For degree n polynomial we guess $B_0 + B_1t + B_2t^2 + \cdots + B_nt^n$
 - For a combination of these, we guess a combination of the corresponding guesses
 - If the guess solution appears in the homogeneous solution, multiply by t
- Example: $y'' 3y 4y = 3e^{2t}$
 - $-\lambda = -1, 4$
 - General homogeneous solution: $y_h(t) = c_1 e^{-t} + c_2 e^{4t}$
 - Guess: $y = Ae^{2t}$

* Plug this in we get
$$4Ae^{2t} - 6Ae^{2t} - 4Ae^{2t} = 3e^{2t}$$

* $-6A = 3 \implies A = -\frac{1}{2}$
articular solution: $y_p = -\frac{1}{2}e^{2t}$

- Particular solution:
$$y_p = -$$

- General solution: $y = -\frac{1}{2}e^{2t} + c_1e^{-t} + c_2e^{4t}$ • Example: $y'' - 3y' - 4y = 2e^{-t}$

- - General homogeneous solution: $y_h(t) = c_1 e^{-t} + c_2 e^{4t}$
 - Guess: $y = Ae^{-t}$
 - * Plugging this in: $Ae^{-t} + 3Ae^{-t} 4Ae^{-t} = 2e^{-t}$

* However this is equal to zero! This is because e^{-t} is already in our homogeneous solution

- Guess: $y = Ate^{-t}$ * $y' = Ae^{-t} - Ate^{-t}$ * $y'' = -2Ae^{-t} + Ate^{-t}$
 - * Plugging this in and solving we get $A = -\frac{2}{5}$

Example Problem: RLC Circuit

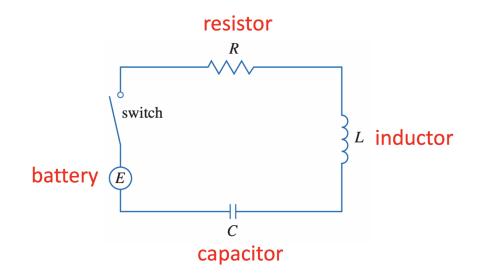


Figure 1: RLC Circuit

- Voltage across the inductor is L^{dI}/_{dt}; voltage across a capacitor is Q/C
 From Kirchhoff's Voltage Law: L^{dI}/_{dt} + RI + Q/C = E(t)
- - Since $I = \frac{dQ}{dt}$ we can transform this into $L\frac{d^2Q}{dt^2} + R\frac{dQ}{dt} + \frac{Q}{C} = E(t)$ This is a second order linear nonhomogeneous ODE