Lecture 2, Sep 9, 2022

Classification of Differential Equations

- Ordinary vs Partial Differential Equations
- PDEs have partial derivatives, resulting from the presence of multiple independent variables • Order
 - The highest derivative that appears in the equation
- Linear vs Nonlinear
 - The most general nth order ODE can be expressed as $F(t, y, y', \dots, y^{(n)}) = 0$ A linear ODE can be written as $a_0(t)y^{(n)} + a_1(t)y^{(n-1)} + \dots + a_n(t)y = g(t)$
 - - * a_n can depend on t and t alone
 - The linear DE is homogeneous if q(t) = 0
- Autonomous vs Nonautonomous

- An autonomous ODE does not explicitly depend on t, e.g. y' = y is autonomous, y' = ty is not • Separable vs Nonseparable

- A first order ODE
$$\frac{dy}{dt} = f(t, y)$$
 is separable if we can decompose $f(t, y) = p(t)q(y)$

• Example: $\frac{\mathrm{d}u}{\mathrm{d}t} = -k(u-T_0)$ is a first order, linear, nonhomogeneous, autonomous, separable ODE

Lotka-Volterra (Predator-Prey)

- Modelling the number of zombies in an apocalypse, where x is the number of people and y is the number of zombies, assumptions:
 - 1. Zombies eat people
 - $-x' = -\beta xy$
 - The rate at which people get eaten is proportional to the number of zombies and people
 - 2. People reproduce
 - $-x' = \alpha x$
 - 3. Zombies suffer natural death and emigration
 - $-y' = \delta xy \gamma y$
 - Zombies flourish when they're being fed; the more there are, the more are dying of natural causes . .

• This is summarized in the system:
$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = \alpha x - \beta xy\\ \frac{\mathrm{d}y}{\mathrm{d}t} = -\gamma y + \delta xy \end{cases}$$

Figure 1: Cycle of predator-prey population