Lecture 17, Oct 17, 2022

First Order Linear Systems of Dimension n

• A general first order linear system can be described by $\vec{x}' = P(t) + \vec{g}(t)$

Theorem $\vec{x}' = P(t) + \vec{g}(t), \vec{x}(t_0) = \vec{y_0}$

and $\mathbf{P}(t), \mathbf{g}(t)$ continuous over $t_0 \in (\alpha, \beta)$, then there exists a unique solution in the interval (α, β)

- Note $\boldsymbol{P}: \mathbb{R} \mapsto {}^n \mathbb{R}^n$ and $\vec{\boldsymbol{g}}: \mathbb{R} \mapsto \mathbb{R}^n$
- We can always centre the problem, so from now we assume $\vec{\boldsymbol{g}}(t)=0$

Theorem

Principle of Superposition: Given

$$\vec{\boldsymbol{x}}' = \boldsymbol{P}(t)\vec{\boldsymbol{x}}$$

and $\vec{x}_1(t), \vec{x}_2(t), \cdots, \vec{x}_n(t)$ are solutions, then

$$c_1\vec{\boldsymbol{x}}_1(t) + c_2\vec{\boldsymbol{x}}_2(t) + \dots + c_n\vec{\boldsymbol{x}}_n(t)$$

is also a solution for any c_1, c_2, \cdots, c_n

This makes the set of all solutions a vector space

Definition

Functions $\vec{x}_1, \vec{x}_2, \cdots, \vec{x}_n$ are linearly independent if

$$c_1 \vec{x}_1(t) + c_2 \vec{x}_2(t) + \dots + c_n \vec{x}_n(t) = \vec{0} \implies c_1 = c_2 = \dots = c_n = 0$$

Definition

The Wronskian

$$W[\vec{\boldsymbol{x}}_1, \vec{\boldsymbol{x}}_2, \cdots, \vec{\boldsymbol{x}}_n](t) = \det \begin{bmatrix} \begin{vmatrix} & & & & \\ \vec{\boldsymbol{x}}_1 & \vec{\boldsymbol{x}}_2 & \cdots & \vec{\boldsymbol{x}}_n \\ & & & & \end{vmatrix} = \det(\boldsymbol{X}(t))$$

If $det(\mathbf{X}(t)) \neq 0$ for all t, then the solutions are independent

Theorem

If $\vec{x}_1, \vec{x}_2, \cdots, \vec{x}_n$ are linearly independent solutions, then any solution can be expressed as

$$\vec{\boldsymbol{x}}(t) = c_1 \vec{\boldsymbol{x}}_1(t) + c_2 \vec{\boldsymbol{x}}_2(t) + \dots + c_n \vec{\boldsymbol{x}}_n(t)$$

for some set of unique c_1, c_2, \cdots, c_n

Such a set of $\vec{x}_1, \vec{x}_2, \cdots, \vec{x}_n$ is known as the *fundamental set* of the ODE

• This set of c_1, c_2, \cdots, c_n depends on the initial conditions: If $\vec{x}(0) = \vec{b}$, then $\vec{c} = X(0)^{-1}\vec{b}$