
Lecture 16, Oct 14, 2022
Numerical Integration Methods

• Riemann sums approximates the function as a series of constant value segments
• Trapezoidal rule approximates the function as a number of linear segments
• Simpson’s one-third rule approximates the function as a series of parabolas

– Take the current point, the next point, a point halfway, and fit a parabola

–
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* This is just a closed-form solution for the integral of the parabola that passes through these 3

points

Figure 1: Simpson’s Rule

Improved Euler Method

• When we solve an ODE, we are essentially integrating: ϕ(tn+1) = ϕ(tn) +
� tn+1

tn

f(t, ϕ(t)) dt

• Euler’s method, yn+1 = yn + hf(tn, yn) is essentially approximating f as a constant value f(t, y) =
f(tn, yn)

– This essentially makes a Riemann sum – so what if we used a trapezoidal sum instead?
• This leads to the improved Euler method yn+1 = yn + h

f(tn, yn) + f(tn+1, yn+1)
2

– However, we can’t quite use yn+1 in the right hand side because we haven’t found it yet
– We can use Euler’s method to find an estimate for it

Definition

The Improved Euler/Heun/(((((Abdullah Method:

yn+1 = yn + h
f(tn, yn) + f(tn + h, yn + hf(tn, yn))

2

• IEM is a second order method – local truncation error is O(h3) and global truncation error is O(h2)
– However, IEM requires two function evaluations per step

1



– But if h ≪ 1
2 this still makes IEM much more efficient

Runge-Kutta Method

Definition

The Runge-Kutta Method:

yn+1 = yn + h
sn1 + 2sn2 + 2sn3 + sn4

6

where
sn1 = f (tn, yn)

sn2 = f

(
tn + 1

2h, yn + 1
2hsn1

)
sn3 = f

(
tn + 1

2h, yn + 1
2hsn2

)
sn4 = f (tn + h, yn + hsn3)

• The Runge-Kutta method essentially approximates with a parabola (Simpson’s Rule)
• The derivative is evaluated at the current point, the next point, and also the point in the middle
• Runge-Kutta is a fourth order method – local truncation error is O(h5) and global truncation error is

O(h4)
– Each step requires 4 function evaluation

Adaptive Step Sizes
• What if we could use smaller step sizes where it’s needed?
• Run a standard step of Euler’s method, and one IEM step; if we assume that the IEM gives the absolute

truth, then the difference between the two approximations is the error
• The local truncation error should scale like h2

–
eest

n+1
h2 =

|yeuler
n+1 − yIEM

n+1 |
h2 ≈ const

• If we adjust the step size to hnew, with some new local truncation error ϵ, then ϵ

h2
new

≈ const

• Therefore if we want to keep the local truncation error ϵ constant, then we can have
eest

n+1
h2 = ϵ

h2
new

Important

To keep the error rougly fixed at ϵ, adjust the step size as

hnew = h

√
ϵ

eest
n+1

where eest
n+1 = |yeuler

n+1 − yIEM
n+1 |
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