Lecture 14, Oct 7, 2022

Euler's Method

• Iterative method: Solve y' = f(t, y) by $y_{n+1} = y_n + hf(t_n, y_n)$

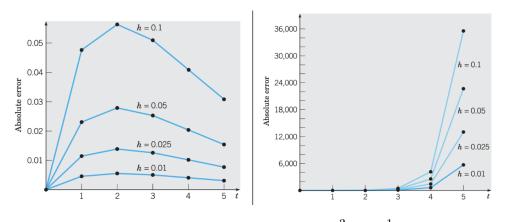


Figure 1: Comparison of errors in Euler's method for $y' = \frac{3}{2} - t - \frac{1}{2}$ and y' = 4 - t + 2y

- A larger step size always increases the error in Euler's method
- Error accumulates in Euler's method, but this is not always the case sometimes the absolute error can decrease
 - Why do approximations work better sometimes?

/ / / / / \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
/ / / / / ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
/ / / / ·	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
// //////	
-	
-	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

Figure 2: Comparison of solutions for $y' = \frac{3}{2} - t - \frac{1}{2}$ and y' = 4 - t + 2y

- Notice the left has a solution of $y(t) = 7 2t Ce^{-\frac{t}{2}}$ and the right has a solution of $y(t) = -\frac{7}{4} + \frac{1}{2}t + Ce^{2t}$ - In the left one, all solutions converge towards y(t) = 7 - 2t, while in the right solution diverge
 - A small error in the left eventually decays away, while a small error in the right blows up